(1)热敏性
半导体材料的电阻率与温度有密切的关系.温度升高,半导体的电阻率会明显变小.例如纯锗(Ge),温度每升高10度,其电阻率就会减少到原来的一半.
(2)光电特性
很多半导体材料对光十分敏感,无光照时,不易导电;受到光照时,就变的容易导电了.例如,常用的硫化镉半导体光敏电阻,在无光照时电阻高达几十兆欧,受到光照时电阻会减小到几十千欧.半导体受光照后电阻明显变小的现象称为“光导电”.利用光导电特性制作的光电器件还有光电二极管和光电三极管等.
近年来广泛使用着一种半导体发光器件--发光二极管,它通过电流时能够发光,把电能直接转成光能.目前已制作出发黄,绿,红,蓝几色的发光二极管,以及发出不可见光红外线的发光二极管.
另一种常见的光电转换器件是硅光电池,它可以把光能直接转换成电能,是一种方便的而清洁的能源.
(3)搀杂特性
纯净的半导体材料电阻率很高,但掺入极微量的“杂质”元素后,其导电能力会发生极为显著的变化.例如,纯硅的电阻率为214×1000欧姆/厘米,若掺入百万分之一的硼元素,电阻率就会减小到0.4欧姆/厘米.因此,人们可以给半导体掺入微量的某种特定的杂质元素,精确控制它的导电能力,用以制作各种各样的半导体器件.
(1)决定电阻率的因素:
电阻率与晶向有关。对于各向异性的晶体,电导率是一个二阶张量,共有27个分量。特别,对于Si之类的具有立方对称性的晶体,电导率可以简化为一个标量的常数(其他二阶张量的物理量都是如此)。
电阻率的大小决定于半导体载流子浓度n和载流子迁移率μ:ρ=1/ nqμ。对于掺杂浓度不均匀的扩散区的情况,往往采用平均电导率的概念;在不同的扩散浓度分布(例如高斯分布或余误差分布等)情况下,已经作出了平均电导率与扩散杂质表面浓度之间的关系曲线,可供查用。
金属是由金属原子组成的晶格和自由电子组成的,实际参与导电的是自由电子.晶格是一直振动的,和分子的热运动相关.金属之所以有电阻是由于晶格对自由电子的定向移动的阻碍.而且由于温度越高,晶格震动越强烈,所以它的阻碍效应就越明显,这是金属电阻随温度升高而变大的原因. 对于半导体,它不像金属那样有很多自由电子,它的电子基本都被束缚在原子核上.所以它需要一定的温度或者光来激发,是它的电子获得足够的能量,摆脱原子核的束缚,从而成为能够参与导电的粒子.所以温度升高,能够参与导电的粒子就越多,电阻就越小.欢迎分享,转载请注明来源:内存溢出
评论列表(0条)