电子科技大学2008年硕士研究生入学考试大纲
(初试.专业课)
考试科目 836信号与系统和数字电路 考试层次 √ 博士入学
√ 硕士入学
考试时间 180分钟 总分 150分
参考书目 SIGNALS AND SYSTEMS A.V.Oppenheim 电子工业出版社
脉冲与数字电路 万栋义 电子科技大学出版社
脉冲与数字电路 王毓银 高等教育出版社
信号与系统 何子述 高等教育出版社
信号与系统分析 张明友 电子工业出版社
信号与系统复习考研例题详解 张明友 电子工业出版社 2001年
考试范围:
《信号与系统》部分(60%)
熟练掌握信号的定义和分类,信号的基本运算,奇异信号的概念和运算性质;熟练掌握系统的定义,系统的性质。
了解线性时不变系统的数学描述、零输入响应和零状态响应的概念;熟练掌握系统冲激响应的定义及对系统特性的描述;能熟练进行卷积和、卷积积分计算,熟练掌握卷积的运算性质。
深刻理解连续时间信号傅立叶级数分解和傅立叶变换的物理意义,熟练掌握和能灵活应用傅立叶变换的性质;掌握系统频率响应定义及相关概念;熟练掌握信号的滤波、调制、采样、恢复及采样定理等理论;掌握希尔伯特变换。
掌握双边拉氏变换的定义、收敛域的概念、傅氏变换与拉氏变换的关系;熟练掌握双边拉氏变换的性质;熟练掌握连续时间系统函数及与系统特性的关系;能熟练地用双边或单边拉氏变换理论求系统(和电路)响应;熟练掌握连续时间系统的方框图描述;能根据系统函数建立连续时间系统状态方程。
掌握双边z变换的定义和收敛域概念,熟练掌握双边z变换的性质;熟练掌握离散时间系统函数及与系统特性的关系;能熟练地用双边或单边z变换求系统响应;熟练掌握离散时间系统的方框图描述;能根据系统函数建立离散时间系统状态方程。
《数字电路》部分(40%)
一、大纲依据:
根据“数字逻辑设计及应用”课程教学大纲有关要求和有关专业技能培养目标的需求为依据设定。
二、大纲内容:
主要包括数字电路基础知识、概念与定理体系;组合电路、时序电路分析与设计;综合分析与应用三大部分。
1、数字电路基础知识、概念与定理体系(20%)
主要考评考生对于数字电路基础知识、概念的理解掌握程度以及对数字逻辑定理体系的掌握与运用能力。
主要内容有:二进制数的表达、转换与运算;逻辑函数的基本表达方式及相互的转换;数字逻辑定理的表述、证明和运用;组合逻辑最简表达与静态冒险问题;组合电路、时序电路的基本特性等。
2、组合电路、时序电路分析与设计(50%)
主要考评考生对以逻辑门、基本时序元件为基础的数字组合电路、时序电路分析设计的基本技能的掌握程度,分析、设计过程的规范表达能力。
主要内容有:以逻辑门、基本时序元件为基础的数字组合电路、时序电路分析;利用逻辑门、基本时序元件完成规定电路功能的设计;分析、设计过程的规范表达;常用数字逻辑功能单元电路(如译码器、编码器、数据选择器、比较器、加法器、计数器、移位寄存器等)的基本运用等。
3、综合分析与应用(30%)
主要测试考生利用指定数字电路功能模块设计出能完成预定任务要求的电路的能力或分析指定电路所实现的功能。
主要内容有:常用数字逻辑功能单元电路(如译码器、编码器、数据选择器、比较器、加法器、计数器、移位寄存器等)的综合应用。
考试科目 841模拟电路 考试层次 √ 博士入学
√ 硕士入学
考试时间 180分钟 总分 150分
参考书目 模拟电路分析与设计基础 吴援明 科学出版社 2006年
第一章 半导体材料及二极管
一、了解半导体的基本知识
本征半导体与杂质半导体(P型与N型);本征激发与复合;杂质电离;空穴导电原理;多子与少子;漂移电流与扩散电流的概念;PN结的形成(耗尽层、空间电荷区和势垒区的含义);PN结的单向导电特性;不对称PN结。
二、掌握二极管的基本知识
二极管单向导电特性及二极管伏安特性方程;二极管伏安特性曲线及其温度特性;二极管导通电压与反向饱和电流;二极管的直流电阻与交流电阻(估算式);硅管与锗管的区别。
三、二极管应用
掌握单向导电特性应用:整流与限幅。能分析简单二极管电路。
正向导通特性应用:恒压源模型及小信号模型。
反向击穿特性及应用:了解反向击穿现象;掌握稳压管工作原理及电路。
了解电容效应及应用:势垒电容与扩散电容;变容二极管原理。
第二章 双极型晶体三极管(BJT)
一、理解BJT工作原理
NPN与PNP管;放大偏置特点;放大偏置时内部载流子传输;放大偏置时外电流关系(掌握直流传输方程,,,ICBO,ICEO的概念);放大偏置时的vBE、vCE的作用(正向电压的指数控制作用和反向电压的基区宽调效应);BJT的截止与饱和状态及特点。
二、BJT静态伏安特性曲线
理解共射输入特性曲线和输出特性曲线(三个区)及特点。
三、BJT参数
理解、、、、ICBO、ICEO、ICM、PCM、BVCEO和fT的含义
四、混合模型
理解完整模型和了解模型参数的物理含义。
熟练掌握两种简化模型(gm参数和参数模型)及其模型参数的计算方法。
第三章 BJT放大电路
一、理解放大器的一些基本概念
信号源(内阻,源电压,源电流);负载电阻;输入输出电压(电流);耦合电容与旁路电容;直流通路与交流通路;交流地;工作点;小信号放大的波形演示。
二、熟练掌握BJT偏置电路的分析和设计方法
工作点的估算;直流负载线;稳基流电路;基极分压射极偏置电路的稳Q原理和稳定条件。
三、BJT三种基本组态放大器(中频段)
熟练掌握小信号放大器指标及其意义:端增益、源增益、输入与输出电阻。
掌握CE、CC、CB放大电路、指标及特点;熟练掌握等效电路分析法。
掌握CE放大器的交流负载线的画法和动态范围的分析方法;理解截止失真与饱和失真。
四、多级放大器
理解级间耦合方式;了解直流放大器的特殊问题;掌握放大器通用模型;掌握多级放大器指标计算。
第四章 MOSFET及其放大电路
一、FET原理
了解FET的分类、电路符号;了解N沟道增强MOSFET的工作原理及N沟道JFET;放大区的沟道状态及vGS和vDS对iD的影响。
二、FET特性曲线
以N沟道增强型MOSFET为重点,理解FET的结构特性曲线和输出特性曲线,掌握放大区的平方律公式。
三、FET偏置电路(自给偏压和混合偏置)
掌握工作点的估算方法,了解P沟道FET与N沟道FET偏置极性的差别。
四、FET的小信号模型
理解gm的含义及计算式,理解rds含义、完整小信号模型;掌握低频小信号模型。
五、FET的CS和CD组态放大器
熟练掌握放大器电路的指标计算及特点。
第五章 放大器的频率响应
一、放大器频率响应的概念及描述
掌握产生频率响应的原因;理解放大器频率特性函数,掌握fL、fH、BW的定义;理解幅频特性和相频特性函数;了解频率失真(幅频失真、相频失真)及其与非线性失真的区别;了解对数频率特性曲线波特图的概念。理解放大器的增益函数、零、极点。
二、掌握放大器的低、高频截止频率的估算
用短路时间常数法估算fL;用开路时间常数法估算fH。
第六章 模拟集成单元电路
一、恒流源
熟练掌握恒流源电路的原理、模型及主要指标;理解基本镜像恒流源、比例恒流源和微电流恒流源电路和特点;熟练掌握有源负载放大器工作原理。
二、熟练掌握差动放大器的工作原理和分析方法
差放的信号分解(vic、vid与任模信号关系);各种差放电路;差放工作点估算;差放的指标(Avd,Avc,KCMR,Rid,Ric,Ro)及用单边等效电路法求指标,差放抑制零漂的原因;了解差放的小信号范围、大信号限幅特性及频率特性。
三、功率输出电路
了解功放的分类,乙类功放优于甲类功放的特点;理解乙类功放的交越失真及克服方法。
掌握互补功放的电路原理及满激励指标(效率、管耗、电源功率)的计算;理解功率管极限参数(ICM,PCM,BVCEO);理解复合管的连接方式。
第七章 负反馈技术
一、单环理想模型
理解基本概念:原输入xs、净输入xi和反馈信号xf;A放大器、B网络;开环增益A与闭环增益Af;反馈系数B;反馈深度F;环路传输系数T;基本反馈方程;正反馈与负反馈;深度负反馈。四种反馈类型及其双口网络模型。
二、掌握反馈放大器类型及极性的判断
三、理解负反馈的效果
理解负反馈稳定闭环增益、展宽通频带、减小非线性失真、改变输入输出电阻和稳定工作点的作用。
四、掌握A、B电路分析法和负反馈放大电路交流参数的计算;熟练掌握深负反馈条件下Af和Avsf的计算。
五、负反馈放大器的稳定性
理解产生自激振荡的原因和自激条件;了解用已知的T(j)和A(j)的波特图判断稳定性的方法;了解稳定裕量的计算方法;了解自激振荡的消除方法。
第八、九章 集成运算放大器及其应用电路与设计
一、了解集成运放电路组成及特点,理解放大电路的四种模型。
二、了解集成运放的主要参数:Avd,KCMR,Rid,Ro,BWG,SR,VIO,dVIO/dT,Iio,dIIO/dT
三、熟练掌握理想运放分析法
虚短路与虚开路法则;理想运放分析法成立的原因;两个基本的运放负反馈电路、公式及特点。
四、掌握运放的线性应用电路的分析和设计方法
代数和运算电路;差动放大器;积分器与微分器;了解线性应用电路(有源滤波器、振荡器、比较器、波形发生器等)。
考试科目 813电磁场与电磁波 考试层次 √ 博士入学
√ 硕士入学
考试时间 180分钟 总分 150分
参考书目 电磁场与电磁波(第四版) 谢处方 高等教育出版社 2006年
绪论
第1章 矢量分析
1.1 矢量代数
1.1.1 标量和矢量,1.1.2 矢量的加法和减法,1.1.3 矢量的乘法
1.2 三种常用的正交坐标系
1.2.1 直角坐标系,1.2.2 圆柱坐标系,1.2.3 球坐标系
1.3 标量场的梯度
1.3.1 标量场的等值面,1.3.2 方向导数,1.3.3 梯度
1.4 矢量场的通量与散度
1.4.1 矢量场的矢量线,1.4.2 通量,1.4.3 散度,1.4.4 散度定理
1.5 矢量场的环流与旋度
1.5.1 环流,1.5.2 旋度,1.5.3 斯托克斯定理
1.6 无旋场与无散场
1.6.1 无旋场,1.6.2 无散场
1.7 拉普拉斯运算与格林定理
1.7.1拉普拉斯运算,1.7.2 格林定理
1.8 亥姆霍兹定理
第2章 电磁场的基本规律
2.1 电荷守恒定律
2.1.1 电荷及电荷密度,2.1.2 电流及电流密度,2.1.3 电荷守恒定律与电流连续性方程
2.2 真空中静电场的基本规律
2.2.1 库仑定律 电场强度,2.2.2 静电场的散度与旋度
2.3 真空中恒定磁场的基本规律
2.3.1安培力定律 磁感应强度,2.3.2 恒定磁场的散度与旋度
2.4 媒质的电磁特性
2.4.1电介质的极化 电位移矢量,2.4.2磁介质的磁化 磁场强度,2.4.3 媒质的传导特性
2.5 电磁感应定律和位移电流
2.5.1 法拉第电磁感应定律,2.5.2 位移电流
2.6 麦克斯韦方程组
2.6.1 麦克斯韦方程组的积分形式,2.6.2 麦克斯韦方程组的微分形式,2.6.3 媒质的本构关系
2.7 电磁场的边界条件
2.7.1 边界条件的一般形式,2.7.2 两种特殊情况下的边界条件
第3章 静态电磁场及其边值问题的解
3.1 静电场分析
3.1.1 静电场的基本方程和边界条件、3.1.2 电位函数、3.1.4 静电场的能量
3.2 导电媒质中的恒定电场分析
3.2.1 恒定电场的基本方程和边界条件、3.2.2恒定电场与静电场的比拟
3.3 恒定磁场分析
3.3.1 恒定磁场的基本方程和边界条件、3.3.2 矢量磁位和标量磁位、3.3.3 电感、3.3.4 恒定磁场能量
3.4 静态场的边值问题及解的惟一性定理
3.5 镜像法
3.5.1 接地导体平面的镜像、3.5.2 导体球面的镜像
3.6 直角坐标系中的分离变量法
第4章 时变电磁场
4.1 波动方程
4.2 电磁场的位函数
4.3 电磁能量守恒定律
4.4 惟一性定理
4.5 时谐电磁场
第5章 均匀平面波在无界空间中的传播
5.1 在理想介质中均匀平面波
5.2 电场波的极化
5.3 均匀平面波在导电媒质中的传播
第6章 均匀平面波的反射和透射
6.1 均匀平面波对分界平面的垂直入射
6.3 均匀平面波对理想介质分界平面的斜入射
6.4 均匀平面波对理想导体平面的斜入射
第7章 导行电磁波
7.1 导行电磁波概论
7.2 矩形波导
第8章 电磁辐射
8.1 滞后位
8.2 电偶极子的辐射
基本要求:
① 理解梯度、散度和旋度的概念,掌握其运算方法与规律。
② 理解电荷、电流及电流连续性方程的概念,理解电场和磁场的概念,掌握电场强度与磁感应强度的积分公式,会计算一些简单源分布所产生的场。
③ 掌握静电场的基本方程与基本性质,掌握标量电位及其微分方程,理解静电场的惟一性定理及其重要意义,了解电介质的极化现象及其极化电荷分布,掌握静电场的边界条件,掌握恒定电场的基本方程与边界条件,会计算电容、电阻以及电场能量。
④ 了解分离变量法解题的基本步骤, 能够用分离变量法求解直角坐标中的一些简单的二维边值问题,掌握镜像法解题的基本原理,会用镜像法求解一些典型问题。
⑤ 掌握恒定磁场的基本方程与基本性质,了解矢量磁位及其微分方程,理解静电场的惟一性定理及其重要意义,了解磁介质的磁化现象及其磁化电流分布,掌握恒定磁场的边界条件,会计算电感以及电场能量。
⑥ 掌握电磁感应定律以及位移电流的概念,牢固掌握麦克斯韦方程并理解其深刻含义,掌握电磁场的边界条件,理解坡印廷定理意义和坡印廷矢量的概念,了解电磁波动方程和动态位。
⑦ 掌握正弦电磁场复数表示方法,掌握平面电磁波在理想介质和导电媒质中的传播规律,理解电磁波的极化概念,掌握平面波在两种不同媒质分界面上的反射与折射规律。
⑧ 了解导行电磁波的分析方法,掌握电磁波在矩形波导中的传播特性。
⑨ 理解滞后位的概念,理解电偶极子的辐射特性。
半导体晶圆静电卡盘有多种形状、尺寸和材料可供选择。它们通常是圆形的,比晶圆尺寸稍大。常见的尺寸范围从直径50毫米到超过300毫米。大多数卡盘具有圆形(同心)环真空设计,并且通常会夹持小管芯、部分晶片和整个晶片。例如,150毫米(6英寸)卡盘将具有真空环图案,允许夹持单个芯片、50毫米、75毫米、100毫米和150毫米晶圆。 硅集成器件和电路的物理尺寸对晶片器件的处理施加了一定的限制。
在这方面,我们将开始与探针站的讨论,这是处理硅片或die芯片的关键设备,并为晶片探测提供了机械力学设备。 我们会向读者介绍通常用于射频和微波器件表征的共面波导探针。 测量装置的另一个重要部分是校准衬底基板,它允许我们在实际测量之前校准设置。
最后,我们会向读者介绍由探针站及其所有附件组成的整个测量装置以及矢量网络分析仪(VNA)。 不熟悉的读者可能认为这些设备微不足道,但它们在表征过程中起着至关重要和独特的作用。
在测试装置和测量仪器之间,使用晶片探针和任何其他同轴传输介质提供信号传播手段。 对于线性器件的宽带频域表征,我们通常使用矢量网络分析仪(VNA)作为选择的仪器。 在一个单一的测量设置中连接所有上述部分可能显得微不足道,但只有那些熟练的专家才能真正理解所有的技术细节。 本文的目的是引导读者通过微波微波表征过程,并介绍必要的设备。
近日,前瞻产业研究院发布《 横跨数个百亿赛道 国产射频微波领域仪器仪表如何破局 》专题报道:
频谱分析仪、矢量网络分析仪、射频信号发生器并称为射频三大件,受益于近年来5G商用化进程、新基建工程、智能网联 汽车 的快速推进,中国射频三大件市场规模快速增长,且规模增速快于全球市场。同时,射频三大件持续发挥着“小口径、大带动”的作用,通过自身的技术进步,带动下游5G、半导体、物联网等万亿级市场的进一步发展。
同时,随着中国市场的快速发展,国产替代已经成为大势所趋,如成都玖锦等国内厂商纷纷通过突破技术壁垒、倾力品牌打造、重视市场培育与建设等手段走出一条可持续发展的国产化替代之路。
1、中国射频三大件市场发展现状
——射频三大件(频谱分析仪、矢量网络分析仪、射频信号发生器)概述
频谱分析仪
根据国家标准《GB/T 11461-2013 频谱分析仪通用规范》,频谱分析仪是能够在频域上有效地显示出构成时域信号的各个单独频谱分量(正弦波)的仪器。
频谱分析仪能够以模拟或数字方式显示信号的频域特性,实现信号失真度、调制度、稳定度等参数的测量,在射频领域有“射频万用表”的美称。传统的频谱分析仪基于“扫频式”原理,前端电路是一定带宽内可调谐的接收机,输入信号经变频器变频后由滤波器输出,滤波输出作为垂直分量,频率作为水平分量,在示波器屏幕上绘出坐标图,就是输入信号的频谱图。随着集成电路技术、快速A/D变换技术、频率合成技术、数字信号处理技术、微处理器技术的飞速发展,频谱分析仪无论从功能还是性能都得到了极大的扩展和提升。
现代的高端频谱分析仪采用了快速傅里叶变换技术,这种技术一方面将被测信号分解成分立的频率分量,达到与传统频谱分析仪同样的结果,另一方面将被测信号数字化,使得频谱分析仪具备了矢量信号分析功能和实时频谱分析功能。基于此,当今的频谱分析仪也可称为矢量信号分析仪(或实时频谱分析仪)。
在具体下游应用领域方面,矢量信号分析仪广泛应用于卫星通讯、雷达、频谱监测、半导体、新能源、人工智能、物联网、 汽车 电子、医疗电子、航空航天和国防、电子对抗、教育科研等行业。
矢量网络分析仪
根据行业标准《SJ/T 11433-2012 矢量网络分析仪通用规范》,矢量网络分析仪是一种能完成复传输和复反射S参数测量和分析的仪器,能够对单端口、两端口或多端口网络的S参数进行测量和分析,具有按某种误差模型的要求,进行测量校准、自动修正误差的能力。
矢量网络分析仪结合了频谱分析仪技术、信号发生器技术以及矢量网络分析技术等各项技术,是射频微波领域必备的测试测量仪器,并且是诸多行业专用仪器的基础形态。
矢量网络分析仪会利用自带的信号发生器向被测件发射信号,再通过对折返的信号进行分析,获取待测件的信息属性。
射频信号发生器
射频信号发生器可在各种频率上产生射频信号,具有高光谱纯度、稳定的频率和振幅,不仅可以生成任意波形信号,还可以将任意波形信号上变频成射频微波信号,是无线电设备和射频微波器件研发、制造、维修、检测的必要设备,具体功能包括生成矢量调制信号、电磁兼容、微波信号产生、时钟测试和安规认证等。广泛分布于通讯、半导体、新能源、 汽车 电子、医疗电子、消费电子、航空航天、教育科研等行业。
——射频三大件市场规模稳步增长,中国市场增速快于全球市场增速
随着航空航天、5G商用化、 汽车 智能化、物联网、半导体等行业的快速发展,全球射频三大件产品的市场需求快速增长。结合弗若斯特沙利文、Technavio等机构的统计测算数据,测算2021-2025年全球射频三大件市场规模年复合增长率在5.7%左右,到2025年全球射频三大件市场规模将达到270亿元左右。
注:市场规模口径包含频谱和网络分析仪、信号发生器市场规模数据依据2021年人民币与美元平均汇率进行换算。
在中国市场方面,受益于5G商用化进程、新基建工程、智能网联 汽车 的快速推进,中国射频三大件市场在近几年快速增长,且市场增速快于全球市场增速。结合Technavio、弗若斯特沙利文、灼识咨询等机构测算数据,测算2021-2025年中国射频三大件市场规模年复合增长率在8%左右,到2025年中国射频三大件市场规模将接近100亿元。
注:市场规模口径包含频谱和网络分析仪、信号发生器市场规模数据依据2021年人民币与美元平均汇率进行换算。
根据灼识咨询的统计测算数据,在频谱分析仪、网络分析仪和信号发生器这三大产品构成的市场中,频谱分析仪市场占比最大,达到39.7%,接近40%信号发生器和矢量网络分析仪市场占比相近,均在30%左右,具体占比分别为30.5%和29.8%。
——射频三大件带动下游万亿级市场发展
射频三大件与下游应用领域的发展是相辅相成的,射频三大件本身市场规模虽然相对较小,但射频三大件产品是下游应用领域发展所必须的基础测量设备。
下游5G通信、商业航天、物联网、半导体、毫米波雷达、卫星通信等领域产品和技术的升级与发展需要更高性能的仪器来实现相关指标的测量与测试。射频三大件产品可以对复杂的信号进行频谱测量分析、频谱监测、调制与解调、电路网络分析、电磁兼容测试等,并且能够结合相关软件为下游应用提供全面的测量测试解决方案。因此射频三大件是典型的“小口径,大带动”产品,射频三大件产品技术与性能的提升,将辐射带动下游行业的快速发展。
典型下游应用领域的市场状况方面,物联网领域,根据赛迪统计测算数据,2021年中国物联网市场规模达到2.63万亿元5G领域,根据中国信息通信研究院统计测算数据,2021年5G直接带动经济总产出1.3万亿元半导体领域,根据美国半导体行业协会(SIA)统计数据,2021年中国半导体行业销售额达到1925亿美元汽车 电子领域,根据中国 汽车 工业协会统计测算数据,2021年中国 汽车 电子市场规模达到8894亿元卫星通信领域,根据赛迪无线电管理研究所统计测算数据,测算2021年中国卫星通信产业市场规模在900亿元左右。
在应用场景方面,射频信号发生器是对无线电信号进行测量的必备工具,在高频率范围的信号中应用尤其广泛频谱和矢量网络分析仪方面,主要用于研发、生产测试、现场维护和教育教学等,高端产品主要应用在高性能射频器件开发、毫米波通信系统和前沿研究。
从具体的应用领域来看,射频三大件的下游应用行业基本相同,具体包括半导体、消费电子、移动通信、 汽车 电子、自动驾驶、车联网、物联网、国防与航空航天、科研与教育等,其中多个下游应用行业加速发展,有望催化测量仪器需求的高速增长。
2、中国射频三大件市场竞争格局
——产品技术端:国内厂商实现了高端化突破,电科思仪和成都玖锦处于第一梯队
近年来,国内厂商在产品方面实现了高端化突破。成都玖锦、电科思仪等国内高端产品厂商信号发生器、信号分析仪和矢量网络分析仪等产品均突破了50GHz,均可对标国际一线品牌同类仪器指标。
综合来看,在射频三大件方面,国内厂商与国外厂商的技术水平差距已然不大,部分国内厂商具备一定的实力与国外厂商进行横向比较。
在具体企业的产品性能方面,电科思仪在射频三大件产品中均代表了国内厂商的最高水平,其次是成都玖锦,其射频三大件产品性能紧随其后,均接近国内厂商的最高水平。
根据国内企业各产品数据手册以及企业公告等公开资料的整理和分析,对中国射频三大件市场相关企业进行了技术层面的竞争格局划分。电科思仪和成都玖锦处于产品性能的第一梯队,鼎阳 科技 、普源精电、创远仪器、优利德等企业位于产品性能的第二梯队。
——市场布局端:国内厂商紧抓窗口机遇期,基本实现了高中低端市场的全面覆盖
市场端方面,新冠疫情带来的全球产业链重构为国内厂商带来了窗口机遇期,国内厂商例如普源精电、鼎阳 科技 、优利德等,纷纷通过IPO募集资金,以期抓住机会窗口,进一步扩大在国内市场的影响力。
在原本外国厂商垄断的高端市场实现国产化突破之后,以电科思仪、成都玖锦、鼎阳 科技 、普源精电等企业为代表的国内厂商已经基本实现了国内高中低端市场的全面覆盖。
——市场竞争端:上市企业营收快速增长,国内厂商地位不断提升,高端产品市场替代空间更为广阔
此处选取了电子测量仪器行业中对射频三大件相关业务进行数据披露的企业进行汇总分析,普源精电采用其射频类仪器业务营收,鼎阳 科技 采用其波形和信号发生器、频谱和矢量网络分析仪业务营收,创远仪器采用其信号分析与频谱分析、矢量网络分析业务营收。
通过汇总发现,2018-2020年选取企业射频三大件相关业务增长势头迅猛,2019年选取企业射频三大件相关业务营收增长29.92%,2020年选取企业射频三大件相关业务营收增长24.41%与此同时,选取企业射频三大件相关业务在中国市场中的占比也逐年提升。综合以上数据,从一定程度上说明了中国市场中国内厂商的市场地位在不断提升。
注:普源精电与鼎阳 科技 尚未发布2021年整年细分产品数据,因此此处2021年数据仅包含普源精电和鼎阳 科技 相关业务的2021年上半年数据。
根据弗若斯特沙利文的统计及测算数据,在整个中国电子测量仪器市场中,是德 科技 、罗德与施瓦茨、安立、泰克、力科等国外厂商的市场份额总和在40%左右,由于高端产品市场几乎被国外厂商垄断,由此可见在高端产品市场,国外厂商的市场份额远在40%以上。
上述上市公司产品主要定位于中端,但除此之外,国内已经实现高端化突破的企业,例如电科思仪、成都玖锦等,目前并未上市,其信号发生器、信号分析仪和矢量网络分析仪等产品均突破了50GHz,均可对标国际一线品牌同类仪器指标,已经成为了国外厂商在中国高端产品市场的直接竞争对手,因此在高端射频三大件产品领域,存在着广阔的竞争与国产化替代空间。
3、中国射频三大件国产替代路径:国产替代已是大势所趋,国内厂商如何破局
——突破技术壁垒
射频信号发生器、频谱和矢量网络分析仪技术核心主要基于射频微波电路和数字信号处理等学科,产品主要的技术门槛在于射频微波电路设计以及数字信号分析算法、软件平台等,涉及到较多的微波电磁波和通信理论,应用的射频芯片技术复杂且成本较高,前期研发投入大。
与此同时,随着5G通信、雷达、物联网、 汽车 电子、卫星通信等下游应用领域的快速发展,使得频域信号测量的应用范围得到扩展,下游应用领域对于频域测量仪器的性能提出了更高的要求,因此要实现国产替代,必须需要突破中高端射频三大件产品的技术壁垒 ,例如当产品达到26.5GHz的测量频率范围后,产品的射频芯片、射频材料、射频连接、微波仿真、微组装电路工艺等相关技术的设计难度和成本也迅速提升,因此中高端的射频三大件产品具有较高的技术壁垒,需要迫切地实现中高端产品的自主可控。
突破技术壁垒就意味着需要投入大量的人力和资金,众多国内厂商纷纷加大投入,加快自主研发脚步。以成都玖锦为例,其投入大量的研发人员与研发资金,其中研发人员占比达到66%,研发费用占比达到35%,均领先行业内的其他企业。这样的做法带来的成效也是极其显著的,经过多年技术积累,成都玖锦通过自主掌握的“宽频段超带宽多通道信号生成及模拟技术”、“宽带高隔离激励源和多通道信号分离接收技术”、“宽频段大动态宽带信号接收和分析技术”、“高速数字采集与处理技术”等四大硬核技术,打破国际技术壁垒,开发了“信号分析仪”、“信号发生器”、“矢量网络分析仪”和“综合测试仪”等产品线,正在国内高端电子测试测量仪器市场迅速崛起。
——倾力品牌打造
近年来党和国家高度重视中国品牌的建设。自2017年起将每年5月10日设立为“中国品牌日”。新时代、新经济、新赛道背景下,品牌价值对于企业的重要性已毋庸置疑,从中国制造到中国创造,随着电子信息产业链的强化发展,高端科研仪器技术的国产替代,其难点不只在技术,更在于整个市场的一份“信任感”。
国产自主品牌的建设之道在于用互联网思维打造工业品牌,例如成都玖锦从诞生之日起,就定位高端技术,秉持“一群人、一件事、一颗心、一辈子”的人文主义和长期主义精神,投入到了高端电子测试测量仪器仪表的研发工作上。2022年成都玖锦也备受国家重视,入选了中国品牌日。
同时,在疫情防控常态化下,国产自主品牌紧密结合新时代传播渠道特色,创新打通线上线下进行国产品牌的传播与推广,打造自己的品牌阵地。
——重视市场培育与建设
在射频三大件所属的通用电子测试测量仪器领域,欧美有是德 科技 、泰克、力科和罗德与施瓦茨等行业优势企业,培育了更为成熟的使用者,其能够熟练理解和使用功能日趋复杂的通用电子测试测量仪器,在选择相关仪器时能够更好的鉴别产品的性能,选择一些性价比高的品牌。
由此可见,企业对于市场消费者使用习惯的培育与建设尤为重要,是打造市场和品牌护城河的一项有力手段。例如成都玖锦通过对国内客户消费/使用习惯的洞察,从市场需求和使用习惯的角度出发,使得其产品符合国内消费者的 *** 作习惯,无需适应新的 *** 作模式,极大地降低了产品使用的学习成本除此之外,成都玖锦产品具有出色的可扩展性和兼容性,极大地降低了用户相关产品生态的建设成本。上述两种方式均是快速实现国产替代的有效手段和途径。
再例如电科思仪最新发布的“天衡星”系列产品,除了在性能和功能方面具有优势以外,“天衡星”系列产品采用高清大屏呈现测量结果,多种参数一览无余,且支持多点触控、自定义 *** 控界面、“一键搜索”等功能,使 *** 作更为简洁高效。
4、总结:中国市场快速发展,国产化替代正当时
近年来中国射频三大件市场规模快速增长,并且带动下游万亿级市场进一步发展。与此同时,国内厂商无论是在市场地位方面还是产品性能方面均得到了不同程度的提升和发展,尤其是技术水平的差距进一步缩小。综合来看,万事俱备,国产化替代正当时。
在国产化替代方面,不同企业选择了不同的实施路径,部分企业着力于实现技术壁垒的突破,部分企业倾力于品牌的打造,部分企业重视市场培育与建设,部分企业则多管齐下,致力于走出一条可持续化发展的国产替代之路。
以上内容来源于网络,侵删!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)