非晶态半导体的吸收方式

非晶态半导体的吸收方式,第1张

光与非晶态半导体作用所产生的光吸收包括本征吸收、 激子吸收、 自由载流子吸收、 声子吸收及杂质吸收等, 由于吸收方式不同, 它们分别发生在不同的光谱波段。

本征吸收

当用能量足够大的光子照射某种非品态半导体时, 可其价带中电子吸收光子后跃迁到导带, 形成电子 一空穴对,种带问跃迁吸收是本征吸收。由于非晶态半导体不具有长有序, 简约波矢 k 不再是电子态的好量子数 , 故电子的跃迁受准动量守恒的限制。

激子吸收

实验发现, 在本征吸收的长波边缘有一系列吸收线, 它们对应激子吸收线。这些吸收线不像本征吸收那样伴有光电导, 说明受激电子并未进入导带形成 自由电子, 而是与留下的空穴束缚在一起形成电子一空穴对, 即激子。这种光吸收叫做激子吸收。理论极限上, 可以区分两种不同类型的激子幢,即弗仑克尔( F r e n k d) 激子和万尼尔激子。在弗仑克尔激子情况下, 电子和空穴形成一个点偶极矩, 电子 一空穴间距离和晶格常数相近。弗仑克尔激子常出现在绝缘体和分子 晶体中, 并伴随着强烈的电子一声子相互作用。在万尼尔激子情况下电子和空穴间相互作用较弱, 电子和空穴相距远大于晶格常数, 电子沿束缚或非束缚的类氢轨道绕空穴转动, 通常在非晶态半导体中碰到的下正是这种激子。激子的能态与氢原子的相似, 由一系列能级组成, 位于导带带尾附近。激子可以在非晶半导体中一处运动到另一处, 很易演变成亚稳态D与 D 一 对。

自由载流子吸收

自由载流子吸收是重要的和最普通的一种带内电子跃迁 光吸收过程。当入射光子能量不够高, 不足以引起带间跃迁或激子吸收时, 可以发生自由载流子在同一能带中的跃迁吸 收, 称做自由载流子吸收。自由载流子吸收光谱的特点在于 吸收曲线无明显结构和随波长的单调增加, 当其吸收谱位于红外和微波波段在一定范围内变化时, 某些材料对同一光子能量的吸收系数与其直流电导率成正比, 说明这种吸收是自由载流子吸收引起的。

声子吸收

晶态半导体在红外波具有由于光子与晶格振动相互作用引起的吸收区域, 被晶格吸收的光子能量转变成为晶格原子的振动能。对非晶态半导体, 在红外波段也存在着类似的光吸收。这是一种入射光子与非晶半导体的网格的相互作用,引起网格振动模式的光吸收。以 a —S i : H为例, 材料中存在着 S i l l、 S i H 2 、 S i H 3 及( s i H) 等各种组态, 其红外吸收谱就是这 些组态振动能量间的跃迁所引起的吸收光谱。

非晶态半导体与晶态相比较,其中存在大量的缺陷。这些缺陷在禁带之中引入一系列局域能级,它们对非晶态半导体的电学和光学性质有着重要的影响。四面体键非晶态半导体和硫系玻璃,这两类非晶态半导体的缺陷有着显著的差别。

非晶硅中的缺陷主要是空位、微空洞。硅原子外层有四个价电子,正常情况应与近邻的四个硅原子形成四个共价键。存在有空位和微空洞使得有些硅原子周围四个近邻原子不足,而产生一些悬挂键,在中性悬挂键上有一个未成键的电子。悬挂键还有两种可能的带电状态:释放未成键的电子成为正电中心,这是施主态;接受第二个电子成为负电中心,这是受主态。它们对应的能级在禁带之中,分别称为施主和受主能级。因为受主态表示悬挂键上有两个电子占据的情况,两个电子间的库仑排斥作用,使得受主能级位置高于施主能级,称为正相关能。因此在一般情况下,悬挂键保持只有一个电子占据的中性状态,在实验中观察到悬挂键上未配对电子的自旋共振。1975年斯皮尔等人利用硅烷辉光放电的方法,首先实现非晶硅的掺杂效应,就是因为用这种办法制备的非晶硅中含有大量的氢,氢与悬挂键结合大大减少了缺陷态的数目。这些缺陷同时是有效的复合中心。为了提高非平衡载流子的寿命,也必须降低缺陷态密度。因此,控制非晶硅中的缺陷,成为目前材料制备中的关键问题之一。

硫系玻璃中缺陷的形式不是简单的悬挂键,而是换价对。最初,人们发现硫系玻璃与非晶硅不同,观察不到缺陷态上电子的自旋共振,针对这表面上的反常现象,莫脱等人根据安德森的负相关能的设想,提出了MDS模型。当缺陷态上占据两个电子时,会引起点阵的畸变,若由于畸变降低的能量超过电子间库仑排斥作用能,则表现出有负的相关能,这就意味着受主能级位于施主能级之下。用 D、D、D 分别代表缺陷上不占有、占有一个、占有两个电子的状态,负相关能意味着:

2D ─→ D+D

是放热的。因而缺陷主要以D、D形式存在,不存在未配对电子,所以没有电子的自旋共振。不少人对D、D、D缺陷的结构作了分析。以非晶态硒为例,硒有六个价电子,可以形成两个共价键,通常呈链状结构,另外有两个未成键的 p电子称为孤对电子。在链的端点处相当于有一个中性悬挂键,这个悬挂键很可能发生畸变,与邻近的孤对电子成键并放出一个电子(形成D),放出的电子与另一悬挂键结合成一对孤对电子(形成D),如图5所示。因此又称这种D、D为换价对。由于库仑吸引作用,使得D、D通常是成对地紧密靠在一起,形成紧密换价对。硫系玻璃中成键方式只要有很小变化就可以形成一组紧密换价对,如图6所示,它只需很小的能量,有自增强效应,因而这种缺陷的浓度通常是很高的。利用换价对模型可以解释硫属非晶态半导体的光致发光光谱、光致电子自旋共振等一系列实验现象。

(1)元素半导体。元素半导体是指单一元素构成的半导体,其中对硅、硒的研究比较早。它是由相同元素组成的具有半导体特性的固体材料,容易受到微量杂质和外界条件的影响而发生变化。目前, 只有硅、锗性能好,运用的比较广,硒在电子照明和光电领域中应用。硅在半导体工业中运用的多,这主要受到二氧化硅的影响,能够在器件制作上形成掩膜,能够提高半导体器件的稳定性,利于自动化工业生产。[2]

(2)无机合成物半导体。无机合成物主要是通过单一元素构成半导体材料,当然也有多种元素构成的半导体材料,主要的半导体性质有I族与V、VI、VII族;II族与IV、V、VI、VII族;III族与V、VI族;IV族与IV、VI族V族与VI族;VI族与VI族的结合化合物,但受到元素的特性和制作方式的影响,不是所有的化合物都能够符合半导体材料的要求。这一半导体主要运用到高速器件中,InP制造的晶体管的速度比其他材料都高,主要运用到光电集成电路、抗核辐射器件中。 对于导电率高的材料,主要用于LED等方面。[2]

(3)有机合成物半导体。有机化合物是指含分子中含有碳键的化合物,把有机化合物和碳键垂直,叠加的方式能够形成导带,通过化学的添加,能够让其进入到能带,这样可以发生电导率,从而形成有机化合物半导体。这一半导体和以往的半导体相比,具有成本低、溶解性好、材料轻加工容易的特点。可以通过控制分子的方式来控制导电性能,应用的范围比较广,主要用于有机薄膜、有机照明等方面。[2]

(4)非晶态半导体。它又被叫做无定形半导体或玻璃半导体,属于半导电性的一类材料。非晶半导体和其他非晶材料一样,都是短程有序、长程无序结构。它主要是通过改变原子相对位置,改变原有的周期性排列,形成非晶硅。晶态和非晶态主要区别于原子排列是否具有长程序。非晶态半导体的性能控制难,随着技术的发明,非晶态半导体开始使用。这一制作工序简单,主要用于工程类,在光吸收方面有很好的效果,主要运用到太阳能电池和液晶显示屏中。[2]

(5)本征半导体:不含杂质且无晶格缺陷的半导体称为本征半导体。在极低温度下,半导体的价带是满带,受到热激发后,价带中的部分电子会越过禁带进入能量较高的空带,空带中存在电子后成为导带,价带中缺少一个电子后形成一个带正电的空位,称为空穴。空穴导电并不是实际运动,而是一种等效。电子导电时等电量的空穴会沿其反方向运动。[5] 它们在外电场作用下产生定向运动而形成宏观电流,分别称为电子导电和空穴导电。这种由于电子-空穴对的产生而形成的混合型导电称为本征导电。导带中的电子会落入空穴,电子-空穴对消失,称为复合。复合时释放出的能量变成电磁辐射(发光)或晶格的热振动能量(发热)。在一定温度下,电子-空穴对的产生和复合同时存在并达到动态平衡,此时半导体具有一定的载流子密度,从而具有一定的电阻率。温度升高时,将产生更多的电子-空穴对,载流子密度增加,电阻率减小。无晶格缺陷的纯净半导体的电阻率较大,实际应用不多。[6]


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9218281.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-26
下一篇 2023-04-26

发表评论

登录后才能评论

评论列表(0条)

保存