Chiplet会给整个半导体产业链带来哪些变化呢?

Chiplet会给整个半导体产业链带来哪些变化呢?,第1张

Chiplet是一种通过流程改进来解决“摩尔定律”失效的方法。Chiplet通过一组小芯片,走了一条与传统片上系统(SOC)完全不同的道路,类似于搭建乐高积木。LEGO”组件。Chiplet技术是SoC集成发展到一定程度后的一种新型芯片设计方法。封装技术,将不同功能、不同工艺的小芯片封装在一起,成为异构集成芯片。

Chiplet将给整个半导体产业链带来非常革命性的变化。对于国内半导体产业而言,Chiplet的先进封装技术与国外差距不大,有望引领中国半导体产业实现质的突破。站在Fab的立场上,高良率的好处是显着的,即使包括封装成本,二来不同工艺节点的die可以混合封装,有利于最新工艺的销售。成本的降低促进了chiplet的生态发展。

以chiplet为主导的新技术方向,但中芯国际、三安光电等机构的票数明显减弱,可见本轮半导体市场仍以游资炒作为主。市场成交量维持在万亿左右的存量环境,市场资金无法支撑两条主线并行。未来几天,芯片与新能源的PK或将继续上演。周期是指事物变化和发展的过程,类似于特征的两次连续出现之间经过的时间间隔。

要知道Chiplet俗称chiplet,又称小芯片。2Marvell的创始人之一SehatSutardja博士提出了Mochi架构的概念。Chiplet模式是摩尔定律放缓下半导体技术的发展方向之一,被认为有弯道超车的机会。通过SiP封装,将多个模块芯片与底层基础芯片封装在一起,形成系统芯片。同时,Chiplet产业联盟定义了UCIe互连标准,实现芯片内部的高速互连通信。

量子计算是一类遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息的物理装置。当某个装置处理和计算的是量子信息、运行的是量子算法时,它就是量子计算机。现在或许还无法准确预测“量子计算机时代”何时到来,但在科学家看来,已经没有什么原理性的困难可以阻挡这种革命性、颠覆性产品的诞生。

量子计算机研制(图片来源于网络)

以半导体芯片为核心的计算机的发明成就了现代信息技术产业(硬件、软件、网络、通信等)的高速发展,深刻改变了人类的社会活动形式,甚至是国防安全和国家核心竞争力。半导体集成电路芯片几十年以来一直沿着“摩尔定律”发展,单位芯片上晶体管数目越来越多,集成度越来越高。

截止到目前,集成电路芯片制造工艺处于14&10nm技术代量产阶段,更小尺寸的技术代(7nm和5nm)处于研发阶段。在可预见的未来将达到控制电子的物理极限,当单个晶体管缩小到只能容纳一个或几个电子时,就会出现单电子晶体管(量子点),量子隧穿效应将不可避免的影响电子元器件的正常工作。尽管科研人员正在努力通过各种手段进一步延续晶体管的制程尺寸并同时开发多核芯片技术,但相关技术只能在有限范围内优化传统芯片性能,无法阻止“摩尔定律”必将被打破的历史趋势。

集成电路芯片(图片来源于网络)

当现代计算机芯片在经典物理领域内无法进一步提升结构性能时,可以研究探索有别于当前计算机架构的新型结构和多核芯片,或者研究量子力学规律开发量子计算。新型结构需要抛弃当前计算机所遵循的冯·诺依曼架构,而量子计算则需要改变现有半导体芯片的基本结构,利用量子叠加和量子纠缠来实现逻辑运算。国际半导体技术发展路线图认为多核芯片等技术只能短期延续摩尔定律,中长期必然要发展以量子物理为基础的量子计算等颠覆性、革命性新型器件来超越摩尔定律,信息的量子化趋势将不可避免。量子计算是芯片尺寸突破经典物理极限的必然产物,是后摩尔时代具有标志性的技术。

对于现代计算机而言,通过控制晶体管电压的高低电平,从而决定一个数据到底是“1”还是“0”,采用“1”或“0”的二进制数据模式,俗称经典比特,其在工作时将所有数据排列为一个比特序列,对其进行串行处理。而量子计算机使用的是量子比特,量子计算机能秒杀传统计算机得益于两个独特的量子效应:量子叠加和量子纠缠。量子叠加能够让一个量子比特同时具备0和1的两种状态,量子纠缠能让一个量子比特与空间上独立的其他量子比特共享自身状态,创造出一种超级叠加,实现量子并行计算,其计算能力可随着量子比特位数的增加呈指数增长。理论上,拥有50个量子比特的量子计算机性能就能超过目前世界上最先进的超级计算机“天河二号”,拥有300个量子比特的量子计算机就能支持比宇宙中原子数量更多的并行计算,量子计算机能够将某些经典计算机需要数万年来处理的复杂问题的运行时间缩短至几秒钟。这一特性让量子计算机拥有超强的计算能力,为密码分析、气象预报、石油勘探、药物设计等所需的大规模计算难题提供了解决方案,并可揭示高温超导、量子霍尔效应等复杂物理机制,为先进材料制造和新能源开发等奠定科学基础。

量子计算机工作原理(图片来源于网络)

此外,量子计算的信息处理过程是幺正变换,幺正变换的可逆性使得量子信息处理过程中的能耗较低,能够从原理上解决现代信息处理的另一个关键技术--高能耗的问题。因此,量子计算技术是后摩尔时代的必然产物。

量子计算技术不仅能克服现代半导体工艺因为尺寸减小而引起的热耗效应,还能利用量子效应实现功能强大的并行计算,极大地提高计算速度和信息处理能力。规模化通用量子计算机的诞生将极大地满足现代信息的需求,在海量信息处理、重大科学问题研究等方面产生巨大影响,甚至对国家的国际地位、经济发展、科技进步、国防军事和信息安全等领域发挥关键性作用。

(一)国家影响力

信息是当今世界最为重要的战略资源,计算机技术是现代信息技术的核心,信息处理能力是信息时代的基本生产力,是国家的核心竞争力,体现国家综合实力的重要标志。二战结束以来,美国一直占据超级计算机研发的尖端,最初主要用于计算导dd道以及核武器模拟计算等军事活动当中,后来逐步应用到科研、产品研发、金融等各个领域。随后,计算机和互联网技术在美国迅速发展壮大,并在世界范围内扩展和加速全球化进程,美国在此过程中积累了其强大的国际影响力。量子计算科技革命给了我国一个从经典信息技术时代的跟踪者、模仿者转变为未来信息技术的引领者的、不可错过的伟大机遇。量子计算技术是一种颠覆性技术,关系到一个国家未来发展的基础计算能力,一旦形成突破,会使掌握这种能力的国家迅速建立起全方位战略优势,引领量子信息时代的国际发展。

(图片来源于网络)

(二)经济影响力

量子计算机能克服现代计算机发展所遇到的能耗和量子效应问题,从而摆脱半导体行业面临的摩尔定律失效的困境,同时突破经典极限,利用量子加速、并行特性解决经典计算机难以处理的相关问题。作为现代计算机的颠覆者,未来量子计算机会像经典计算机一样形成庞大的技术产业链,在国民经济生活中产生重大影响。其突破必将为信息和材料等科学技术的发展开辟广阔的空间,成为后摩尔时代和后化石能源时代人类生活的技术依托。量子计算机的研制必将带动包括材料,信息,技术,能源等一大批产业的飞跃式发展。量子计算机强大的并行计算和模拟能力,将为密码分析、气象预报、石油勘探、药物设计等所需的大规模计算难题提供了解决方案,从而为提高国家整体经济竞争力创造条件。

量子计算与气象预报(图片来源于网络)

(三)科技影响力

过去50年以来,半导体及信息行业的技术发展经历过数次突破,从处理器的运算速度到存储器容量,再到网络带宽,每一次突破之后都能带来巨大的社会进步。目前,海量数据处理已成为急需攻克的壁垒。当前计算机处理海量数据的能力非常薄弱,传统计算机已经远远无法满足信息量爆炸式增长的需求,迫切需要从原理上突破超大信息容量和超快运算速度的瓶颈,而量子计算机正好能有效满足这一需求。量子计算机在科学研究领域具有广泛应用前景。学术界认为,在量子计算机达到大规模应用的比特数之前,将首先用于对量子体系的模拟。量子计算机利用其特殊的量子力学原理,将为强关联等物理学提供完美的检验平台。同时量子计算对于生物制药、机器学习、人工智能领域将产生深远影响,并对提高国家科技影响力起到积极作用。

人工智能(图片来源于网络)

(四)军事影响力

量子物理与计算科学第一次大规模结合的直接原因就是研制核心武器的需求。在计算技术的发展历程中,军事应用价值始终是其重要推动力之一。量子计算机的强大功能应用到国防建设时,其强大的运算、搜索、处理能力,将为未来武器研发提供计算、模拟平台,缩短研发周期,提高武器研发效率。还将在未来战场上破译加密密文,为及时高效准确的情报和战况分析提供技术支撑,提升作战能力,同时在战场计划、组织决策、后勤保障等方面发挥巨大作用,甚至有可能改变未来战争的形态,掌握其核心技术能够极大地增强国防综合实力。

量子物理与军事(图片来源于网络)

(五)国家信息安全

量子计算机最受关注的重要应用之一是破译现代密码体系。理论研究表明,目前使用的RSA公开密钥体系在量子计算机面前将不堪一击。构建于基于经典保密系统之上的安全体系将变得无秘可言。此外,量子计算对于信息安全的威胁还具有前溯性,如果现在的通信网络流量遭到窃听并被存储下来,未来潜在的对手利用量子计算能力,就能对这些通常加密的信息进行破解,从而在多年以后将威胁范围追溯到当前。量子计算机的研制已经成为国际社会关注的焦点,其对国家安全体系的重大意义不言而喻。

量子计算机纵然有无比强大的颠覆性功能,然而通用量子计算机的研制过程是相当复杂的。研制量子计算机的关键在于量子比特的制备。量子比特非常脆弱,外界任何微弱的环境变化都可能对其造成破坏性影响。因此,量子计算机的核心部件通常处于比太空更加寒冷的密封极低温环境中,防止受到其他环境因素的干扰。量子比特的制备方式存在多种方案,经过近二十年的发展,国际主流研究集中到了超导量子比特、半导体量子点、囚禁离子、钻石空位和拓扑量子比特等。

由于量子计算对于国家安全及经济发展的巨大影响,世界各国政府持续高强度资助量子计算机的研制。毫无疑问,美国在量子计算机研制上是国际最领先的,并且有着完整的布局。虽然量子计算研究的进展低于十年前的预期,但还是让人们看到了突破可集成化量子计算机技术瓶颈的希望。特别当量子比特的保真度突破了容错量子计算的阈值,使得一些基本量子算法得到演示。这些巨大的成就吸引了一些国际商业机构和政府部门的极大关注。

(图片来源于网络)

量子计算机研制已经进入一个十分关键的时刻,国际上超大计算机、信息企业都投入巨大人力、物力来研制量子计算机。主要包括:2012年微软研究院(美国)成立了量子体系结构与计算研究组,主要的目标是实现量子计算机软件体系结构, 包括量子程序设计语言及编译系统。2013年谷歌公司与美国国家航空航天局(NASA)联合成立了量子人工智能实验室,研究如何将量子计算机应用于大数据分析与机器学习。2014年9月2日谷歌宣布美国UCSB大学的 Martinis教授研究组加入谷歌公司研发量子计算机处理器。2014年 IBM宣布耗资30亿美元研发下一代芯片(五年计划),主要是量子计算与神经计算。2015年世界最大的芯片制造商Intel公司宣布投入巨资与荷兰代尔夫特理工大学合作研发基于硅量子点的量子计算机,并于近日开发出了将量子计算机需要的超纯硅附着在传统微电子工业标准晶圆上的技术,以期抢占半导体量子计算机研制的制高点。2015年5月,全球最大的国防工业企业洛克希德.马丁(Lockheed Martin)与马里兰大学合作研发集成量子计算平台。2016年5月4日IBM公司发布了5个量子比特的量子计算云服务。2016年8月4日马里兰大学与美国国家标准与技术研究院(NIST)发布5个量子比特的可编程量子计算机。美、日、欧等发达国家在前期已经投入大量研发资金之后,2016年4月欧盟又宣布于2018年启动总额10亿欧元的量子技术项目,促进包括通用量子计算机等在内的多项量子技术的发展。同月,澳大利亚政府宣布在澳大利亚量子计算与通信技术中心成立量子计算实验室,进一步集中对半导体硅基量子芯片等研究加大投入,以期抢占半导体量子计算的制高点。

我国政府也很重视量子信息技术的发展,在《国家中长期科学和技术发展规划纲要(2006-2020年)》中将“量子调控研究”列为四个重大科学研究计划之一,给予量子信息技术稳定的研究支持,做出了一系列创新性研究成果,在某些方面已经处于国际领先地位,特别是基于量子物理的新型量子保密通信技术已逐步迈向实用化产业化。

然而实用化量子计算机的研制是一个系统工程,既要以量子物理为基础进行量子计算模型的原理性创新,又要从材料体系,结构工艺,系统构架和软件控制等工程技术创新和积累,我国在现代工艺技术上的基础薄弱,在核心电子器件、高端通用芯片、基础软件、极大规模集成电路制造装备等长期落后,也导致我国量子计算的研究大都局限于原理验证性和演示性层面,缺乏系统深入的实验平台和以实用化量子计算机为目标的研究队伍。特别是在可扩展的固态量子比特研究体系上,国内只有中国科学技术大学、南京大学、清华大学、浙江大学和中国科学院物理研究所等少数单位开展相关研究。虽然经过近几年不懈努力,我们在半导体量子点和超导量子比特研究中取得了一系列重大突破,在某些方面达到了世界一流水平,但是与国际领先水平还有差距,特别是在人力和物力方面的投入与欧美国家相比还远远不足。

(图片来源于网络)

量子计算机的研制需要物理、材料、信息和计算机科学等多学科的紧密协调和结合,从而实现从大规模器件的制备向微电子工程方面迈进。通用量子计算机的研制还有很长的路需要走,量子计算机的研制将伴随着经典计算的发展一起前进,相信随着量子比特的保真度达到容错量子计算的阈值,量子计算机的研究已经从实验室阶段向工程技术化阶段迈进,越来越多的研究单位和大型公司企业将进入,从而加速可实用化通用量子计算机研制的进程。从先进的发展模式而言,各大公司与研究机构合作研制量子计算机是集科研机构、公司、政府部门等于一体的研发模式,这可能是未来推进量子计算机研制的一种有效模式。

出品:科普中国

制作:中国科学技术大学 郭光灿 中国科普博览

监制:中国科学院计算机网络信息中心

“科普中国”是中国科协携同社会各方利用信息化手段开展科学传播的科学权威品牌。

本文由科普中国融合创作出品,转载请注明出处。

因为超导体没有电阻,在电流流过时就不会因为发热而损失电能,因此采用超导电线可以实现远距离无损耗输电,这样电站就可以远离居住区,使我们的生活区更加洁净。 超导体中每平方厘米可以流过几十万安培的强大电流,因而可产生很强的磁场而且消耗的电能很少。日本用超导体产生17。5万高斯的强磁场,加上冷却用电也仅为15KW。这种强磁场是实现受控热核反应的关键之一。 用超导体制成的超导发电机的功率可比目前发电机高100倍以上;超导磁悬浮列车的时速每小时已达550公里;高速超导电子计算机的计算速度每秒可达几百亿次以上。 超导体有可能为我们这个世界带来新的技术革命,所以目前世界各国都把超导研究列为重点攻关项目,以期早日迈入超导时代。迄今为止,已有8位科学家因为研究超导体而获得了诺贝尔奖。 半导体材料 我们日常用的铜、铁、铝等,都很容易导电,因而叫做导体;而橡胶、塑料等几乎不导电,因而叫做绝缘体。如果某物质不是导体,那它就一定是绝缘体吗?答案是否定的。在导体和绝缘体之间还存在大量半导体,其导电能力居中,并且随温度升高而增大,随温度下降而减小。 半导体分三种:本征半导体、p型半导体和n型半导体。 不含杂质的纯净半导体叫本征半导体,它的导电能力很差。为了提高纯质半导体的导电能力,常常在本征半导体中掺入少量杂质。如在硅中掺入硼,硅原子周围就形成可移动的空穴,这就是P型半导体;如果在硅中掺入磷, 材料中就会出现多余电子,这就是n型半导体。它们各有自己的特性,常常联合使用。人们为了获得所需要的半导体,就必须制得纯净的本征半导体。 目前,人们所获得硅的纯度已达14个9,即99。999999999999%。这是人类材料史上的一个奇迹。 半导体材料有许多奇妙用途,在各个领域发挥重要的作用,无论是收音机、电视机,还是大型计算机、工业电气化系统,都离不开半导体材料。 半导体材料是制造电子元件的主要材料,而我们用的收音机、电视机、电子游戏机以及工业用的电子计算机、机器人等,都是由无数的电子元件构成的。半导体材料制成的电子元件不仅功能强、效果好,而且重量轻、寿命长、耗电省。1946年,美国研制出世界上第一台电子计算机,使用了18000个真空电子管,1500个继电器,重量达30吨,占地面积170平方米,真是一个庞然大物。而现在运算速度比它快得多的微型计算机,还没有一张书桌大。 电子元件的发展已经历了四个时代,1947年美国的布拉坦和同事制成了晶体管,这是第一代。晶体管因性能优于电子管而被广泛使用。1962年,在一小块硅片上制成了几个元件组成一个小型电路,这就是小型集成电路。集成电路体积小而功能大,因而迅速发展起来。1965年发展到中规模集成电路,指甲大的一块硅片上可制作上百个元件。1968年出现了大规模集成电路,在5~7平方毫米的硅片上制成了上万个元件。1979年日本在6平方毫米的硅片上制成了15万个元件,这就是超大规模集成电路。目前人们正在研制三维集成电路。前几代集成电路都是平面式的,像一排排的平房。而三维集成电路则像高楼大厦,在一层元件上再重叠一层元件,这样,每个元件与周围元件的联络构成一个空间网络,便于信息的传递和处理。用这种三维集成电路也许可以模拟人脑的思维,如果是这样,那么我们就可以制造出会思考、会自行解决问题的机器人了。 半导体材料具有良好的光电转换效应,是制造光电电池的好材料。有了廉价高效的光电电池,我们才能充分利用清洁的太阳能。有些半导体材料的温差电动势很大,能直接把热能转换为电能。这种温差发电机适用于缺电的边远地区。在宇宙飞行器、导航设备上也用到它。 半导体材料还用于制造激光器。激光方向性好,能量集中,在现代各个行业都得到广泛应用。大功率的激光武器为各国所重视。用半导体制成的发光二极管,在光纤通讯方面有重要用途。光纤通讯比微波通讯效果更好,一条光缆可载上亿门电话。人们预计,光计算机将比电子计算机运算速度快几十倍。 半导体材料经过几十年的发展,已历经三代,最早人们用锗,但锗元件的寿命和效果都不大理想,人们转而重视开发硅,目前硅已成为应用最广泛的半导体材料。为了在高温、高频领域取得进展,人们又看重砷化镓。它是砷在高温下和镓结合生成的化合物,是高频、高温电子元件的理想材料,它必将在巨型计算机、高效机器人、激光、光纤通讯等方面发挥重要作用


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9223156.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-26
下一篇 2023-04-26

发表评论

登录后才能评论

评论列表(0条)

保存