拉曼光谱仪如何选择合适的激发波长?

拉曼光谱仪如何选择合适的激发波长?,第1张

拉曼光谱仪的激发波长种类繁多,例如常规提供的波长有266nm,532nm,633nm,785nm,830nm,1064nm。面对如此繁多的激发波长应该如何选择呢?那么红外激发波长的优劣势?近红外的激发波长一般在700nm以上,常见的有785nm,830nm和1064nm。采用近红外的激发波长通常是为了抑制荧光干扰。荧光需要先吸收外来的光,然后才能发射出荧光。而拉曼是单纯的光散射过程,无需吸收。大多数样品的荧光吸收带都处于可见光的部分,只有少数材料的吸收带位于近红外区域,因此测试大部分的样品,近红外激光不会引起荧光。而拉曼却可以正常出现。当样品在可见激发下有很强的荧光干扰时,使用近红外拉曼是一个很好的解决方案,可以获得优质的拉曼光谱。 但是近红外的激光激发的效率不高(拉曼信号强度与激发波长的四次方成反比)会导致灵敏度降低。所以,785nm激光激发的拉曼强度几乎只有532nm激光激发的拉曼强度的五分之一;1064nm激光激发的拉曼信号强度只有532nm激光激发的十五分之一。此外,CCD探测器的灵敏度在近红外部分的响应度也比较低,因此,与使用可见激光测量相比,要获得同样的光谱质量,近红外拉曼的测量时间相对长很多。那么紫外激发波长的优劣势?紫外激发波长一般在350nm以下,常用的有266nm。采用紫外的激发波长同样可以抑制荧光影响,和近红外相似,荧光的吸收带主要在可见波长段,荧光信号和拉曼不在同一区域(近可见波长段可能也会出现荧光),虽然荧光信号远远高于拉曼信号,但是不会受到荧光的干扰。许多生物样品(例如蛋白质,DNA,RNA等等)会与紫外激发波长产生共振,使拉曼信号增强数倍,对于测试这类样品的结构提供的便捷。此外,紫外激光在半导体材料中的穿透深度一般在几个纳米的量级,对于测试样品表面的薄膜可以进行选择性的分析。紫外波长的激发效率较高,因此使用较低的功率就可以激发出较强的拉曼信号。 但是由于紫外激发波长的热效应较高,在紫外激光照射下会使得样品烧坏或者降解。同时,紫外光束无法用肉眼看见,紫外的激光器体积更大, *** 作复杂,价格也更为昂贵,使得紫外拉曼依然需要专业技术人员 *** 作。 在如此多样的激发波长的拉曼光谱仪(激光器和光谱仪一般都是配对的,无法通过购买多种激发波长的激光器适用同一个光谱仪),根据自身所需检测样品的特性,来挑选合适的激发波长。荧光干扰、共振增强都是需要考虑的。表2是科研级便携式拉曼和亲民型的手持式拉曼,满足您对测试各种样品的需求。

色敏传感器是光敏传感器的一种。光敏器件一般检测的都是在一定波长范围内光的强度,而半导体色敏传感器则可用来直接测量从可见光到近红外波段内单色辐射的波长。

对于用半导体硅制造的光电二极管, 在受光照射时, 若入射光子的能量hυ大于硅的禁带宽度Eg, 则光子就激发价带中的电子跃迁到导带而产生一对电子-空穴。

光在半导体中传播时的衰减是由于价带电子吸收光子而从价带跃迁到导带的结果, 这种吸收光子的过程称为本征吸收。

不同材料对不同波长的光吸收程度不一样。对硅而言,波长短的光子衰减快, 穿透深度较浅, 而波长长的光子则能进入硅的较深区域。

浅的P-N结有较好的蓝紫光灵敏度, 深的P-N结则有利于红外灵敏度的提高, 半导体色敏器件正是利用了这一特性。

依据:半导体中不同的区域对不同的波长分别具有不同的灵敏度。

在具体应用时, 应先对该色敏器件进行标定。

测定不同波长的光照射下, 该器件中两只光电二极管短路电流的比值ISD2/ISD1, (ISD1是浅结二极管的短路电流, 它在短波区较大, ISD2是深结二极管的短路电流, 它在长波区较大)。

确定二者的比值与入射单色光波长的关系。

根据标定的曲线, 实测出某一单色光时的短路电流比值, 即可确定该单色光的波长。 ? 光谱特性

短路电流比-波长特性

温度特性

会被加热。

微波能够穿透半导体,有较高的穿透深度;另外,虽然微波的波段不能被半导体的共价键直接吸收,但是,在半导体中由于量子态叠加效应总能够产生与微波的电磁波能量匹配的振动态,从而产生谐振吸收微波产生热量。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9231655.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-26
下一篇 2023-04-26

发表评论

登录后才能评论

评论列表(0条)

保存