公式见下面:
三角函数的必背公式包括半角公式,倍角公式,两角和与差公式,积化和差公式,和差化积公式。sin(A/2)=±√((1-cosA)/2),cos(A/2)=±√((1+cosA)/2),tan(A/2)=±√((1-cosA)/((1+cosA))。
三角函数是数学中属于初等函数中的超越函数的函数。通常是在平面直角坐标系中定义的,其定义域为整个实数域。
同角三角函数的基本关系 tan
α=sin
α/cos
α
平常针对不同条件的常用的两个公式 sin^2
α+cos^2
α=1
tan
α
tan
α
的邻角=1
锐角三角函数公式 正弦:
sin
α=∠α的对边/∠α
的斜边
余弦:cos
α=∠α的邻边/∠α的斜边
正切:tan
α=∠α的对边/∠α的邻边
余切:cot
α=∠α的邻边/∠α的对边
二倍角公式 sin2a=2sina·cosa
cos2a=cos^2
a-sin^2
a=1-2sin^2
a=2cos^2
a-1
tan2a=(2tana)/(1-tan^2
a)
三倍角公式
sin3α=4sinα·sin(π/3+α)sin(π/3-α)
cos3α=4cosα·cos(π/3+α)cos(π/3-α)
tan3a
=
tan
a
·
tan(π/3+a)·
tan(π/3-a)
三倍角公式推导
sin3a
=sin(2a+a)
=sin2acosa+cos2asina
=2sina(1-sin^2a)+(1-2sin^2a)sina
=3sina-4sin^3a
cos3a
=cos(2a+a)
=cos2acosa-sin2asina
=(2cos^2a-1)cosa-2(1-cos^a)cosa
=4cos^3a-3cosa
sin3a=3sina-4sin^3a
=4sina(3/4-sin^2a)
=4sina[(√3/2)^2-sin^2a]
=4sina(sin^260°-sin^2a)
=4sina(sin60°+sina)(sin60°-sina)
=4sina2sin[(60+a)/2]cos[(60°-a)/2]2sin[(60°-a)/2]cos[(60°-a)/2]
=4sinasin(60°+a)sin(60°-a)
cos3a=4cos^3a-3cosa
=4cosa(cos^2a-3/4)
=4cosa[cos^2a-(√3/2)^2]
=4cosa(cos^2a-cos^230°)
=4cosa(cosa+cos30°)(cosa-cos30°)
=4cosa2cos[(a+30°)/2]cos[(a-30°)/2]{-2sin[(a+30°)/2]sin[(a-30°)/2]}
=-4cosasin(a+30°)sin(a-30°)
=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]
=-4cosacos(60°-a)[-cos(60°+a)]
=4cosacos(60°-a)cos(60°+a)
上述两式相比可得
tan3a=tanatan(60°-a)tan(60°+a)
半角公式 tan(a/2)=(1-cosa)/sina=sina/(1+cosa);
cot(a/2)=sina/(1-cosa)=(1+cosa)/sina
sin^2(a/2)=(1-cos(a))/2
cos^2(a/2)=(1+cos(a))/2
tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))
和差化积 sinθ+sinφ
=
2
sin[(θ+φ)/2]
cos[(θ-φ)/2]
三角函数中的万能公式即:
sinα=2tan(α/2)/(1+tan^2(α/2))
cosα=1-tan^2(α/2)/(1+tan^2(α/2))
tanα=2tan(α/2)/(1-tan^2(α/2))
以上公式也叫万能代换公式,其实就是由二倍角公式推导变形得到的,例如:
sinα=2sinα/2cosα/2
分子分母同时除以cos^2(α/2),即可得到:
=2tan(α/2)/(1+tan^2(α/2))
另外两个同理也可以得到。
三角函数是基本初等函数之一,是以角度(数学上最常用弧度制)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。
三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。
常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。
1、sin(A+B) = sinAcosB+cosAsinB;
2、sin(A-B) = sinAcosB-cosAsinB;
3、cos(A+B) = cosAcosB-sinAsinB;
4、cos(A-B) = cosAcosB+sinAsinB;
5、tan(A+B) = (tanA+tanB)/(1-tanAtanB);
6、tan(A-B) = (tanA-tanB)/(1+tanAtanB);
7、cot(A+B) = (cotAcotB-1)/(cotB+cotA);
8、cot(A-B) = (cotAcotB+1)/(cotB-cotA)。
三角函数应用:
三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。
三角函数(也叫做圆函数)是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。更现代的定义把它们表达为无穷级数或特定微分方程的解,允许它们扩展到任意正数和负数值,甚至是复数值。
三角函数公式包括和差角公式、和差化积公式、积化和差公式、倍角公式等。三角函数公式是数学中属于初等函数中的超越函数的一类函数公式。它们的本质是任意角的集合与一个比值的集合的变量之间的映射,通常的三角函数是在平面直角坐标系中定义的。
1、同角三角函数基本关系:
倒数关系:
tanαcotα=1
sinαcscα=1
cosαsecα=1
商的关系:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
2、两角和公式:
sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB
cos(A+B) = cosAcosB-sinAsinB
cos(A-B) = cosAcosB+sinAsinB
tan(A+B) = (tanA+tanB)/(1-tanAtanB)
tan(A-B) = (tanA-tanB)/(1+tanAtanB)
cot(A+B) = (cotAcotB-1)/(cotB+cotA)
cot(A-B) = (cotAcotB+1)/(cotB-cotA)
3、倍角公式:
tan2A = 2tanA/(1-tan² A)
Sin2A=2SinACosA
Cos2A = Cos²A-Sin² A
=2Cos² A-1
=1-2sin²A
4、三倍角公式:
sin3A = 3sinA-4(sinA)³;
cos3A = 4(cosA)³ -3cosA
tan3a = tan a tan(π/3+a) tan(π/3-a)
5、半角公式:
sin(A/2) = {(1--cosA)/2}
cos(A/2) = {(1+cosA)/2}
tan(A/2) = {(1--cosA)/(1+cosA)}
cot(A/2) = {(1+cosA)/(1-cosA)}
tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)
6、诱导公式:
sin(-a) = -sin(a)
cos(-a) = cos(a)
sin(π/2-a) = cos(a)
cos(π/2-a) = sin(a)
sin(π/2+a) = cos(a)
cos(π/2+a) = -sin(a)
sin(π-a) = sin(a)
cos(π-a) = -cos(a)
sin(π+a) = -sin(a)
cos(π+a) = -cos(a)
tgA=tanA = sinA/cosA
7、万能公式:
sin(a) = [2tan(a/2)] / {1+[tan(a/2)]²}
cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]²}
tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}
8、和差化积:
sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2]
sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2]
cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2]
cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2]
tanA+tanB=sin(A+B)/cosAcosB
9、积化和差:
sin(a)sin(b) = -1/2[cos(a+b)-cos(a-b)]
cos(a)cos(b) = 1/2[cos(a+b)+cos(a-b)]
sin(a)cos(b) = 1/2[sin(a+b)+sin(a-b)]
cos(a)sin(b) = 1/2[sin(a+b)-sin(a-b)]
sin的平方、cos的平方、 tan的平方 的公式是:
1、sin²α+cos²α=1
2、1+tan²α=sec²α
3、1+cot²α=csc²α
4、sin²α=(1-cos2a)/2
5、cos²a=(1+cos2a)/2
6、tan²a=(2tana-1)/(tan2a)
扩展资料三角函数是数学中属于初等函数中的超越函数的函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。
函数关系:
倒数关系:① ;② ;③
商数关系:① ;② .
平方关系:① ;② ;③
参考资料:
公式见下面:
三角函数的必背公式包括半角公式,倍角公式,两角和与差公式,积化和差公式,和差化积公式。sin(A/2)=±√((1-cosA)/2),cos(A/2)=±√((1+cosA)/2),tan(A/2)=±√((1-cosA)/((1+cosA))。
三角函数是数学中属于初等函数中的超越函数的函数。通常是在平面直角坐标系中定义的,其定义域为整个实数域。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)