函数的图像与性质如下:
幂函数(a为常数)最常见的几个幂函数的定义域及图形。当a为正整数时,函数的定义域为区间,他们的图形都经过原点,并当a>1时在原点处与轴相切,且a为奇数时,图形关于原点对称;a为偶数时图形关于轴对称。
当a为负整数时。函数的定义域为除去=0的所有实数。当a为正有理数时,为偶数时函数的定义域为,为奇数时函数的定义域为。函数的图形均经过原点和;如果图形于轴相切,如果图形于轴相切,且为偶数时,还跟轴对称,均为奇数时,跟原点对称。
初等函数是由幂函数、指数函数、对数函数、三角函数、反三角函数、与常数经过有限次的有理运算,加、减、乘、除、有理数次乘方、有理数次开方及有限次函数复合所产生,并且能用一个解析式表示的函数。
即基本初等函数经过有限次的四则运算或有限次的函数复合所构成并可以用一个解析式表出的函数,称为初等函数。一个初等函数,除了可以用初等解析式表示以外,往往还有其他表示形式。初等函数是最先被研究的一类函数。
它与人类的生产和生活密切相关,并且应用广泛。为了方便,人们编制了各种函数表,如平方表、开方表、对数表、三角函数表等。
一、工具:Word软件、数学工具软件
二、 *** 作步骤:
1首先要安装数学工具软件,打开Word,单击“加载项”,可以再功能区看到许多数学方面的工具。
2单击“函数图像”按钮,d出对话框,单击“抛物线”按钮,下面有标准方程和一般二次型方程,选择一种(这里选择一般二次型方程)。
3现在设置a=-2,b=3,c=6,x的取值范围定义为-35<=x<=5,在勾取画焦点、画对称轴、画准线,单击确定。
4现在给曲线定义其他颜色,选择线条颜色——更改,勾选“画刻度”,可以看到函数图像标上了刻度。
5现在点击“插入Word”,关闭对话陆昂,函数图像就制作出来了。
首先我们要分清是什么类型函数,比如正比例函数、反比例函数、一次函数、二次函数、三角函数、对数函数、指数函数等等。然后找关键点,如果是一次函数,找两个点即可,如果是二次函数,先找对称轴,顶点坐标及与坐标轴交点等等。
如果是三角函数,比如正余弦函数,就用五点法做图,如果是对数函数和指数函数,就先分清它的“底”是大于1还是小于1。
函数图像的性质
1. 作法与图形:通过如下3个步骤(1)算出该函数图象与Y轴和X轴的交点的坐标(2)描点;(3)连线,可以作出一次函数的图象——一条直线。
2. 性质:在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
3. k,b与函数图象所在象限。
当k>0时,直线必通过一、三象限,从左往右,y随x的增大而增大;
当k<0时,直线必通过二、四象限,从左往右,y随x的增大而减小;
当b>0时,直线必通过一、二象限;当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图象。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四 象限。
1、用列表的方法来表示两个变量之间函数关系的方法叫做列表法。这种方法的优点是通过表格中已知自变量的值,可以直接读出与之对应的函数值;缺点是只能列出部分对应值,难以反映函数的全貌。如下所示:
2、把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。
扩展资料:
函数的定义:给定一个数集A,假设其中的元素为x。现对A中的元素x施加对应法则f,记作f(x),得到另一数集B。假设B中的元素为y。则y与x之间的等量关系可以用y=f(x)表示。我们把这个关系式就叫函数关系式,简称函数。函数概念含有三个要素:定义域A、值域C和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。
函数(function),最早由中国清朝数学家李善兰翻译,出于其著作《代数学》。之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,或者说一个量中包含另一个量。函数的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。
参考资料:
1幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图象最多只能同时出现在两个象限内;如果幂函数图象与坐标轴相交,则交点一定是原点。
当α>0时,幂函数y=xα有下列性质:
a、图像都经过点(1,1)(0,0);
b、函数的图像在区间[0,+∞)上是增函数;
c、在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小,趋近于0;
2(1) 指数函数的定义域为R,这里的前提是a大于0且不等于1。对于a不大于0的情况,则必然使得函数的定义域不连续,因此我们不予考虑,同时a等于0函数无意义一般也不考虑。
(2) 指数函数的值域为正实数
(3) 函数图形都是上凹的。
(4) a>1时,则指数函数单调递增;若0<a<1,则为单调递减的。
(5) 函数总是在某一个方向上无限趋向于X轴,并且永不相交。
(6) 函数总是通过(0,1)这点,(若
,则函数定过点(0,1+b))
(7)指数函数是非奇非偶函数
3对数函数
定义域:全体正实数
值域:实数集R;
定点:对数函数的函数图像恒过定点(1,0);
单调性:a>1时,在定义域上为单调增函数;0<a<1时,在定义域上为单调减函数;
奇偶性:非奇非偶函数
周期性:不是周期函数
注意:负数和0没有对数。
两句经典话:底真同对数正,底真异对数负。解释如下:
也就是说:若y=logab (其中a>0,a≠1,b>0)
当0<a<1, 0<b0;
当a>1, b>1时,y=logab>0;
当0<a1时,y=logab<0;
当a>1, 0<b<1时,y=logab<0
4三角函数
正余弦函数的定义域都是R,值域都是[-1,1]
正切函数定义域是x≠π/2+kπ,k是整数,值域是R。
正弦函数和余弦函数的最小正周期是2π。
函数图像看法如下:
看函数图像的关键是点和趋势,同时要注意坐标轴内容。多数看图都只是线性函数,也就是说只是平面坐标内画出的特定形状的线条。
线条上一般有这样一些点:极点(最上方或最下方的切点又叫顶点,最右侧或最左侧的切点也是极点),端点(线段两端的点),交点(线条之间或者线条与坐标轴相交的点),拐点(S形曲线中间改变方向的点),切点(曲线与切线相接的点),断点(几段连续曲线之间断开的点)。
还有这样一些趋势(方向)无穷大(向上延伸,通常趋向于某条直线),无穷小(与无穷大相反),趋向于0(向左或向右趋向横坐标轴),封闭循环(类似于圆或多边形的封闭曲线),无限循环(类似于波浪线的重复或相似形状曲线)。
函数图像基本信息:
在数学中,函数f的图形(或图象)指的是所有有序数对(x, fx)组成的集合[1]。具体而言,如果x为实数,则函数图形在平面直角坐标系上呈现为一条曲线。如果函数自变量x为两个实数组成的有序对(x1,x2),则图形就是所有三重序(x1,x2,f(x1,x2))组成的集合,呈现为曲面(参见三维计算机图形)。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)