1、首先看这个函数是不是单调函数,如果不是则反函数不存在如果是单调函数,则只要把x和y互换,然后解出y即可。
2、例如:
y=x^2,x=正负根号y,则f(x)的反函数是正负根号x,求完后注意定义域和值域,反函数的定义域就是原函数的值域,反函数的值域就是原函数的定义域。
一般地,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的 反函数,记作y=f^(-1)(x) 。
扩展资料:
反函数的性质
1、一段连续的函数的单调性在对应区间内具有一致性;
2、严增(减)的函数一定有严格增(减)的反函数;
3、反函数是相互的且具有唯一性;
4、定义域、值域相反对应法则互逆(三反)。
一般是将y=f(x)转换成x=f(y)的形式,然后将x、y互换即可。
如:
y=ln(x)→x=e^y→反函数y=e^x
y=x³→x=³√y→反函数y=³√x
一般来说,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f-1(x) 。
反函数y=f -1(x)的定义域、值域分别是函数y=f(x)的值域、定义域。最具有代表性的反函数就是对数函数与指数函数。
扩展资料
反函数的性质:
(1)函数存在反函数的充要条件是,函数的定义域与值域是一一映射;
(2)一个函数与它的反函数在相应区间上单调性一致;
(3)大部分偶函数不存在反函数(当函数y=f(x), 定义域是{0} 且 f(x)=C (其中C是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0} )。
(4)一段连续的函数的单调性在对应区间内具有一致性;
(5)严增(减)的函数一定有严格增(减)的反函数;
(6)反函数是相互的且具有唯一性。
求反函数的步骤:
1求原函数的值域y∈A
2将函数y=f(x)的形式反解成x=g(y)的形式
3对调x=g(y)中的x,y,并标出定义域x∈A
这样就得出了反函数y=g(x)(x∈A)
求反函数的步骤:
1、反解方程,将x看成未知数,y看成已知数,解出x的值。
2、将这个式子中的x,y兑换位置,就得到反函数的解析式。
3、求反函数的定义域,这个是很重要的一点,反函数的定义域是原函数的值域。
则转变成求原函数的值域问题,求出了解析式,求出了定义域,就完成了反函数的求解。
例如:f(x)=2^x+1的反函数
求原函数的定义域,y>1,以备作反函数的定义域;
从y=2^x +1中解出x=log2(y-1);
x,与y互换,得反函数
y=log2(x-1)
在求反函数的求法中是必须要调换x和y的。
反函数也是函数,是函数的话,一般用x表示自变量,y表示函数。既是习惯,也是约定。
扩展资料:
常见的反函数:
三角函数特殊一点,如arcsin(x)因值域为[-π/2,π/2],需要分段求(向上或向下平移):
y=sinx (-π/2≤x≤π/2)
反函数y=arcsinx
y=sinx (π/2≤x≤3π/2)
反函数y=π-arcsinx
y=sinx (3π/2≤x≤5π/2)
反函数y=2π+arcsinx
-反函数
首先看这个函数是不是单调函数,如果不是则反函数不存在。如果是单调函数,则只要把x和y互换,然后解出y即可。例如 y=x^2,x=正负根号y,则f(x)的反函数是正负根号x,求完后注意定义域和值域,反函数的定义域就是原函数的值域,反函数的值域就是原函数的定义域。
反函数的定义是:设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,大部分偶函数不存在反函数。奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数。
若一个奇函数存在反函数,则它的反函数也是奇函数。因此,在求反函数时要先确定是不是单调函数,如果是就把x和y互换,然后解出y即可。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)