所有的函数基本公式 例如y=x

所有的函数基本公式 例如y=x,第1张

1)线性函数:y=f(x)=mx+b

2)多项式函数:见图。

3)幂函数:y=x^a,

4)有理函数:y=P(x)/Q(x),其中P和Q都是多项式函数;

5)代数函数:对多项式函数进行加减乘除、开根号运算得到的函数,如

y=根号(x平方+1)

6)指数函数:y=a^x,其中a>0,且a≠1;

7)对数函数:y=loga(x),a为底,a>0,且a≠1;

8)三角函数与反三角函数:

y=sinx     y=arcsinx

y=cosx    y=arccosx

y=tanx    y=arctanx

y=cotx    y=arccotx

以及不常用的y=secx, y=arcsecx,y=cscx,y=arccscx,

9)其他没有命名的函数,例如通过无穷级数求和得到的函数。

所有这些函数称为基本初等函数,而前5类是代数运算,后4类不是代数运算得到,称为超越函数(Transcendental Functions)。

总结这些函数及其运算特点,一般在学习微积分之间进行。

首先要看看是s(x)在x=0有没有定义,如果有定义就直接带进去,如果没定义就把x=0代进幂级数带进入求和。

函数(function)表示每个输入值对应唯一输出值的一种对应关系。函数f中对应输入值x的输出值的标准符号为f(x)。包含某个函数所有的输入值的集合被称作这个函数的定义域,包含所有的输出值的集合被称作值域。

三角函数是中学数学的重要内容,它是解决生产、科研实际问题的工具,又是进一步学习其他相关知识和高等数学的基础,它在物理学、天文学、测量学以及其他各种应用技术学科中有着广泛的应用。

分类: 教育/科学 >> 科学技术

解析:

如果还没有学高等数学的话,就不要思考这个问题,记住结果就行了。

一般采用傅立叶级数来计算,计算比较麻烦。

首先对y=x(0<x<pi) y=-x(-pi<x<0)的函数计算其傅立叶级数。

f(x)=pi/2-4/pi(cosx+1/3^2cos3x+1/5^2cos5x+)

然后取0点,得到0=pi/4-2/pi(1+1/3^2+1/5^2+)

推出pi^2/8=1+1/3^2+1/5^2+

令y=∑(1/n^2)

y1=∑(1/(1+2n)^2)

y2=∑(1/(2n)^2)

于是得y=4y2

而y=y1+y2

于是y=4/3y1=pi^2/6

这个问题莱布尼茨和伯努力都曾经研究过,但是没有结果,而欧拉运用他娴熟的数学技巧给出了如下的算法。他实际上采用了泰勒展开的方法。

已知sinZ=Z-Z^3/3!+Z^5/5!-Z^7/7!+……(在此,n!表示n的阶乘)

而sinZ=0的根为0,±π,±2π,……(π表示圆周率)

所以sinZ/Z=1-Z^2/3!+Z^4/5!-Z^6/7!+……的根为±π,±2π,……

令w=Z^2,则1-w/3!+w^2/5!-w^3/7!+……=0的根为π^2,(2π)^2,……

又由一元方程根与系数的关系知,根的倒数和等于一次项系数的相反数,得

1/π^2+1/(2π)^2+1/(3π)^2+……=1/3!

化简,得1+1/2^2+1/3^2+……=π^2/6

欧拉将毫无关系的三角函数与级数放在一起,解决了多年没有结果的问题,他的数学运用能力可见一斑,我们不妨从他的实例中学习解题的方法技巧,有时大胆猜想也是一种不错的办法。

xiaoj3的泰勒展开式子都不对,又如何能够结论的呢?

和贝努利数有关系

其中B(2n)是贝努利数的第2n项。

扩展资料:

泰勒公式历史发展

泰勒简介

18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒(Brook Taylor),于1685年8月18日在英格兰德尔塞克斯郡的埃德蒙顿市出生。1701年,泰勒进剑桥大学的圣约翰学院学习。1709年后移居伦敦,获得法学学士学位。

1712年当选为英国皇家学会会员,同年进入促裁牛顿和莱布尼兹发明微积分优先权争论的委员会。并于两年后获法学博士学位。

从1714年起担任皇家学会第一秘书,1718年以健康为由辞去这一职务。1717年,他以泰勒定理求解了数值方程。最后在1731年12月29日于伦敦逝世。

泰勒以微积分学中将函数展开成无穷级数的定理著称于世。这条定理大致可以叙述为:函数在一个点的邻域内的值可以用函数在该点的值及各阶导数值组成的无穷级数表示出来。然而,在半个世纪里,数学家们并没有认识到泰勒定理的重大价值。

这一重大价值是后来由拉格朗日发现的,他把这一定理刻画为微积分的基本定理。泰勒定理的严格证明是在定理诞生一个世纪之后,由柯西给出的。

泰勒定理开创了有限差分理论,使任何单变量函数都可展成幂级数;

同时亦使泰勒成了有限差分理论的奠基者。泰勒于书中还讨论了微积分对一系列物理问题之应用,其中以有关弦的横向振动之结果尤为重要。

他透过求解方程导出了基本频率公式,开创了研究弦振问题之先河。此外,此书还包括了他于数学上之其他创造性工作,如论述常微分方程的奇异解,曲率问题之研究等。

发展过程

希腊哲学家芝诺在考虑利用无穷级数求和来得到有限结果的问题时,得出不可能的结论-芝诺悖论,这些悖论中最著名的两个是“阿喀琉斯追乌龟”和“飞矢不动”。

后来,亚里士多德对芝诺悖论在哲学上进行了反驳,直到德谟克利特以及后来的阿基米德进行研究,此部分数学内容才得到解决。阿基米德应用穷举法使得一个无穷级数能够被逐步的细分,得到了有限的结果。

14世纪,玛达瓦发现了一些特殊函数,包括正弦、余弦、正切、反正切等三角函数的泰勒级数。

17世纪,詹姆斯·格雷果里同样继续着这方面的研究,并且发表了若干麦克劳林级数。

直到1712年,英国牛顿学派最优秀代表人物之一的数学家泰勒提出了一个通用的方法,这就是为人们所熟知的泰勒级数;爱丁堡大学的科林·麦克劳林教授发现了泰勒级数的特例,称为麦克劳林级数。

参考资料:

-泰勒公式

泰勒展开有直接法和间接法;直接法就是中规中矩的利用泰勒展开定理去做,间接法是通过已知的展开,结合求导,积分等方法得来:

用这种方法求出sinx;因为sinx求导是cosx,再求是-sinx,再求是-cosx,再求就返回sinx;在x=0的时候,sin0=0,cos0=1,所以

展开式中只有一半了,剩下也是正负交替:

cosx可以用间接法:

tanx的展开目前都是用直接法,不过因为后面的项变小很快,只要求出前面几项就可以了。

给前面几项:

tanx=x+x^3/3+(2 x^5)/15+(17 x^7)/315+(62 x^9)/2835+O[x]^11

----------------------------

泰勒展开里面最重要的一个公式是1/(1-x)=1+x+x^2+x^3++x^n(|x|<1)

这个公式可以用等比数列求和公式(当a1=1,公比q=x,|q|<1)求得

这个公式用泰勒直接法是对1/(1-x)按上述的直接法步骤一步步求出来,结果一样,过程这里不废话;

上式里面把x换成-x

而ln方面,因为:

 

求lnx的话,将上面x换成x-1(|x-1|≤1)即可

倒数关系:  tanα ·cotα=1  sinα ·cscα=1  cosα ·secα=1   商的关系:   sinα/cosα=tanα=secα/cscα  cosα/sinα=cotα=cscα/secα  平方关系:  sin^2(α)+cos^2(α)=1  1+tan^2(α)=sec^2(α)  1+cot^2(α)=csc^2(α)平常针对不同条件的常用的两个公式  sin^2(α)+cos^2(α)=1  tan α cot α=1一个特殊公式  (sina+sinθ)(sina-sinθ)=sin(a+θ)sin(a-θ)  证明:(sina+sinθ)(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] 2 cos[(θ+a)/2] sin[(a-θ)/2]  =sin(a+θ)sin(a-θ)坡度公式  我们通常半坡面的铅直高度h与水平高度l的比叫做坡度(也叫坡比), 用字母i表示,  即 i=h / l, 坡度的一般形式写成 l : m 形式,如i=1:5如果把坡面与水平面的夹角记作  a(叫做坡角),那么 i=h/l=tan a锐角三角函数公式  正弦: sin α=∠α的对边/∠α 的斜边  余弦:cos α=∠α的邻边/∠α的斜边  正切:tan α=∠α的对边/∠α的邻边  余切:cot α=∠α的邻边/∠α的对边二倍角公式  正弦  sin2A=2sinA·cosA  余弦  1Cos2a=Cos^2(a)-Sin^2(a)  2Cos2a=1-2Sin^2(a)  3Cos2a=2Cos^2(a)-1  即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a)  正切  tan2A=(2tanA)/(1-tan^2(A))三倍角公式   sin3α=4sinα·sin(π/3+α)sin(π/3-α)  cos3α=4cosα·cos(π/3+α)cos(π/3-α)  tan3a = tan a · tan(π/3+a)· tan(π/3-a)  三倍角公式推导   sin(3a)  =sin(a+2a)  =sin2acosa+cos2asina  =2sina(1-sin²a)+(1-2sin²a)sina  =3sina-4sin^3a  cos3a  =cos(2a+a)  =cos2acosa-sin2asina  =(2cos²a-1)cosa-2(1-cos^a)cosa  =4cos^3a-3cosa  sin3a=3sina-4sin^3a  =4sina(3/4-sin²a)  =4sina[(√3/2)²-sin²a]  =4sina(sin²60°-sin²a)  =4sina(sin60°+sina)(sin60°-sina)  =4sina2sin[(60+a)/2]cos[(60°-a)/2]2sin[(60°-a)/2]cos[(60°-a)/2]  =4sinasin(60°+a)sin(60°-a)  cos3a=4cos^3a-3cosa  =4cosa(cos²a-3/4)  =4cosa[cos²a-(√3/2)^2]  =4cosa(cos²a-cos²30°)  =4cosa(cosa+cos30°)(cosa-cos30°)  =4cosa2cos[(a+30°)/2]cos[(a-30°)/2]{-2sin[(a+30°)/2]sin[(a-30°)/2]}  =-4cosasin(a+30°)sin(a-30°)  =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]  =-4cosacos(60°-a)[-cos(60°+a)]  =4cosacos(60°-a)cos(60°+a)  上述两式相比可得  tan3a=tanatan(60°-a)tan(60°+a)  现列出公式如下: sin2α=2sinαcosα tan2α=2tanα/(1-tan^2(α)) cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) 可别轻视这些字符,它们在数学学习中会起到重要作用。包括一些图像问题和函数问题中三倍角公式  sin3α=3sinα-4sin^3(α)=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cos^3(α)-3cosα=4cosα·cos(π/3+α)cos(π/3-α) tan3α=tan(α)(-3+tan(α)^2)/(-1+3tan(α)^2)=tan a · tan(π/3+a)· tan(π/3-a)半角公式  sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα万能公式  sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)]其他  sinα+sin(α+2π/n)+sin(α+2π2/n)+sin(α+2π3/n)+……+sin[α+2π(n-1)/n]=0 cosα+cos(α+2π/n)+cos(α+2π2/n)+cos(α+2π3/n)+……+cos[α+2π(n-1)/n]=0 以及 sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0四倍角公式  sin4A=-4(cosAsinA(2sinA^2-1)) cos4A=1+(-8cosA^2+8cosA^4) tan4A=(4tanA-4tanA^3)/(1-6tanA^2+tanA^4)五倍角公式  sin5A=16sinA^5-20sinA^3+5sinA cos5A=16cosA^5-20cosA^3+5cosA tan5A=tanA(5-10tanA^2+tanA^4)/(1-10tanA^2+5tanA^4)六倍角公式  sin6A=2(cosAsinA(2sinA+1)(2sinA-1)(-3+4sinA^2)) cos6A=((-1+2cosA^2)(16cosA^4-16cosA^2+1)) tan6A=(-6tanA+20tanA^3-6tanA^5)/(-1+15tanA^2-15tanA^4+tanA^6)七倍角公式  sin7A=-(sinA(56sinA^2-112sinA^4-7+64sinA^6)) cos7A=(cosA(56cosA^2-112cosA^4+64cosA^6-7)) tan7A=tanA(-7+35tanA^2-21tanA^4+tanA^6)/(-1+21tanA^2-35tanA^4+7tanA^6)八倍角公式  sin8A=-8(cosAsinA(2sinA^2-1)(-8sinA^2+8sinA^4+1)) cos8A=1+(160cosA^4-256cosA^6+128cosA^8-32cosA^2) tan8A=-8tanA(-1+7tanA^2-7tanA^4+tanA^6)/(1-28tanA^2+70tanA^4-28tanA^6+tanA^8)九倍角公式  sin9A=(sinA(-3+4sinA^2)(64sinA^6-96sinA^4+36sinA^2-3)) cos9A=(cosA(-3+4cosA^2)(64cosA^6-96cosA^4+36cosA^2-3)) tan9A=tanA(9-84tanA^2+126tanA^4-36tanA^6+tanA^8)/(1-36tanA^2+126tanA^4-84tanA^6+9tanA^8)十倍角公式  sin10A=2(cosAsinA(4sinA^2+2sinA-1)(4sinA^2-2sinA-1)(-20sinA^2+5+16sinA^4)) cos10A=((-1+2cosA^2)(256cosA^8-512cosA^6+304cosA^4-48cosA^2+1)) tan10A=-2tanA(5-60tanA^2+126tanA^4-60tanA^6+5tanA^8)/(-1+45tanA^2-210tanA^4+210tanA^6-45tanA^8+tanA^10)N倍角公式  根据棣美弗定理,(cosθ+ i sinθ)^n = cos(nθ)+ i sin(nθ) 为方便描述,令sinθ=s,cosθ=c 考虑n为正整数的情形: cos(nθ)+ i sin(nθ) = (c+ i s)^n = C(n,0)c^n + C(n,2)c^(n-2)(i s)^2 + C(n,4)c^(n-4)(i s)^4 + +C(n,1)c^(n-1)(i s)^1 + C(n,3)c^(n-3)(i s)^3 + C(n,5)c^(n-5)(i s)^5 + =>比较两边的实部与虚部 实部:cos(nθ)=C(n,0)c^n + C(n,2)c^(n-2)(i s)^2 + C(n,4)c^(n-4)(i s)^4 + i(虚部):isin(nθ)=C(n,1)c^(n-1)(i s)^1 + C(n,3)c^(n-3)(i s)^3 + C(n,5)c^(n-5)(i s)^5 + 对所有的自然数n, 1 cos(nθ): 公式中出现的s都是偶次方,而s^2=1-c^2(平方关系),因此全部都可以改成以c(也就是cosθ)表示。 2 sin(nθ): (1)当n是奇数时: 公式中出现的c都是偶次方,而c^2=1-s^2(平方关系),因此全部都可以改成以s(也就是sinθ)表示。 (2)当n是偶数时: 公式中出现的c都是奇次方,而c^2=1-s^2(平方关系),因此即使再怎么换成s,都至少会剩c(也就是 cosθ)的一次方无法消掉。 (例 c^3=cc^2=c(1-s^2),c^5=c(c^2)^2=c(1-s^2)^2)半角公式  tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);  cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA  sin^2(a/2)=(1-cos(a))/2  cos^2(a/2)=(1+cos(a))/2  tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a)) 和差化积  sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]   sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]  cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]  cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]  tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)  tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)两角和公式  tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)  tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)  cos(α+β)=cosαcosβ-sinαsinβ  cos(α-β)=cosαcosβ+sinαsinβ  sin(α+β)=sinαcosβ+cosαsinβ  sin(α-β)=sinαcosβ -cosαsinβ积化和差  sinαsinβ =-[cos(α+β)-cos(α-β)] /2  cosαcosβ = [cos(α+β)+cos(α-β)]/2  sinαcosβ = [sin(α+β)+sin(α-β)]/2  cosαsinβ = [sin(α+β)-sin(α-β)]/2双曲函数  sh a = [e^a-e^(-a)]/2  ch a = [e^a+e^(-a)]/2  th a = sin h(a)/cos h(a)  公式一:  设α为任意角,终边相同的角的同一三角函数的值相等:  sin(2kπ+α)= sinα  cos(2kπ+α)= cosα  tan(2kπ+α)= tanα  cot(2kπ+α)= cotα  公式二:  设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:  sin(π+α)= -sinα  cos(π+α)= -cosα  tan(π+α)= tanα  cot(π+α)= cotα  公式三:  任意角α与 -α的三角函数值之间的关系:  sin(-α)= -sinα  cos(-α)= cosα  tan(-α)= -tanα  cot(-α)= -cotα  公式四:  利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:  sin(π-α)= sinα  cos(π-α)= -cosα  tan(π-α)= -tanα  cot(π-α)= -cotα  公式五:  利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:  sin(2π-α)= -sinα  cos(2π-α)= cosα  tan(2π-α)= -tanα  cot(2π-α)= -cotα  公式六:  π/2±α及3π/2±α与α的三角函数值之间的关系:  sin(π/2+α)= cosα  cos(π/2+α)= -sinα  tan(π/2+α)= -cotα  cot(π/2+α)= -tanα  sin(π/2-α)= cosα  cos(π/2-α)= sinα  tan(π/2-α)= cotα  cot(π/2-α)= tanα  sin(3π/2+α)= -cosα  cos(3π/2+α)= sinα  tan(3π/2+α)= -cotα  cot(3π/2+α)= -tanα  sin(3π/2-α)= -cosα  cos(3π/2-α)= -sinα  tan(3π/2-α)= cotα  cot(3π/2-α)= tanα  (以上k∈Z)  A·sin(ωt+θ)+ B·sin(ωt+φ) =  √{(A² +B² +2ABcos(θ-φ)} · sin{ ωt + arcsin[ (A·sinθ+B·sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} }  √表示根号,包括{……}中的内容三角函数的诱导公式(六公式)  公式一 sin(-α) = -sinα  cos(-α) = cosα  tan (-α)=-tanα  公式二sin(π/2-α) = cosα  cos(π/2-α) = sinα  公式三 sin(π/2+α) = cosα  cos(π/2+α) = -sinα  公式四sin(π-α) = sinα  cos(π-α) = -cosα  公式五sin(π+α) = -sinα  cos(π+α) = -cosα  公式六tanA= sinA/cosA  tan(π/2+α)=-cotα  tan(π/2-α)=cotα  tan(π-α)=-tanα  tan(π+α)=tanα  诱导公式记背诀窍:奇变偶不变,符号看象限万能公式  sinα=2tan(α/2)/[1+(tan(α/2))²]  cosα=[1-(tan(α/2))²]/[1+(tan(α/2))²]  tanα=2tan(α/2)/[1-(tan(α/2))²]   其它公式   (1) (sinα)^2+(cosα)^2=1(平方和公式)  (2)1+(tanα)^2=(secα)^2  (3)1+(cotα)^2=(cscα)^2  证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可  (4)对于任意非直角三角形,总有  tanA+tanB+tanC=tanAtanBtanC  证:  A+B=π-C  tan(A+B)=tan(π-C)  (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)  整理可得  tanA+tanB+tanC=tanAtanBtanC  得证  同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立  由tanA+tanB+tanC=tanAtanBtanC可得出以下结论  (5)cotAcotB+cotAcotC+cotBcotC=1  (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)  (7)(cosA)^2;+(cosB)^2+(cosC)^2=1-2cosAcosBcosC  (8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC  其他非重点三角函数   csc(a) = 1/sin(a)  sec(a) = 1/cos(a)  (seca)^2+(csca)^2=(seca)^2(csca)^2  幂级数展开式  sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)(x^(2k-1))/(2k-1)!+……。 (-∞<x<∞)  cos x = 1-x^2/2!+x^4/4!-……+(-1)k(x^(2k))/(2k)!+…… (-∞<x<∞)  arcsin x = x + 1/2x^3/3 + 13/(24)x^5/5 + ……(|x|<1)  arccos x = π - ( x + 1/2x^3/3 + 13/(24)x^5/5 + …… ) (|x|<1)  arctan x = x - x^3/3 + x^5/5 -……(x≤1)  无限公式  sinx=x(1-x^2/π^2)(1-x^2/4π^2)(1-x^2/9π^2)……  cosx=(1-4x^2/π^2)(1-4x^2/9π^2)(1-4x^2/25π^2)……  tanx=8x[1/(π^2-4x^2)+1/(9π^2-4x^2)+1/(25π^2-4x^2)+……]  secx=4π[1/(π^2-4x^2)-1/(9π^2-4x^2)+1/(25π^2-4x^2)-+……]  (sinx)x=cosx/2cosx/4cosx/8……  (1/4)tanπ/4+(1/8)tanπ/8+(1/16)tanπ/16+……=1/π  arctan x = x - x^3/3 + x^5/5 -……(x≤1)  和自变量数列求和有关的公式  sinx+sin2x+sin3x+……+sinnx=[sin(nx/2)sin((n+1)x/2)]/sin(x/2)  cosx+cos2x+cos3x+……+cosnx=[cos((n+1)x/2sin(nx/2)]/sin(x/2)  tan((n+1)x/2)=(sinx+sin2x+sin3x+……+sinnx)/(cosx+cos2x+cos3x+……+cosnx)  sinx+sin3x+sin5x+……+sin(2n-1)x=(sinnx)^2/sinx  cosx+cos3x+cos5x+……+cos(2n-1)x=sin(2nx)/(2sinx)编辑本段内容规律  三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。  1.三角函数本质:   [1] 根据右图,有  sinθ=y/ r; cosθ=x/r; tanθ=y/x; cotθ=x/y。  深刻理解了这一点,下面所有的三角公式都可以从这里出发推导出来,比如以推导  sin(A+B) = sinAcosB+cosAsinB 为例:  推导:  首先画单位圆交X轴于C,D,在单位圆上有任意A,B点。角AOD为α,BOD为β,旋转AOB使OB与OD重合,形成新A'OD。  A(cosα,sinα),B(cosβ,sinβ),A'(cos(α-β),sin(α-β))  OA'=OA=OB=OD=1,D(1,0)  ∴[cos(α-β)-1]^2+[sin(α-β)]^2=(cosα-cosβ)^2+(sinα-sinβ)^2  和差化积及积化和差用还原法结合上面公式可推出(换(a+b)/2与(a-b)/2)  单位圆定义  单位圆  六个三角函数也可以依据半径为一中心为原点的单位圆来定义。单位圆定义在实际计算上没有大的价值;实际上对多数角它都依赖于直角三角形。但是单位圆定义的确允许三角函数对所有正数和负数辐角都有定义,而不只是对于在 0 和 π/2 弧度之间的角。它也提供了一个图象,把所有重要的三角函数都包含了。根据勾股定理,单位圆的等式是:  图象中给出了用弧度度量的一些常见的角。逆时针方向的度量是正角,而顺时针的度量是负角。设一个过原点的线,同 x 轴正半部分得到一个角 θ,并与单位圆相交。这个交点的 x 和 y 坐标分别等于 cos θ 和 sin θ。图象中的三角形确保了这个公式;半径等于斜边且长度为1,所以有 sin θ = y/1 和 cos θ = x/1。单位圆可以被视为是通过改变邻边和对边的长度,但保持斜边等于 1的一种查看无限个三角形的方式。  两角和公式   sin(A+B) = sinAcosB+cosAsinB  sin(A-B) = sinAcosB-cosAsinB  cos(A+B) = cosAcosB-sinAsinB  cos(A-B) = cosAcosB+sinAsinB  tan(A+B) = (tanA+tanB)/(1-tanAtanB)  tan(A-B) = (tanA-tanB)/(1+tanAtanB)  cot(A+B) = (cotAcotB-1)/(cotB+cotA)  cot(A-B) = (cotAcotB+1)/(cotB-cotA)

有阶乘n!,(2n)!等等的级数

通常都是指数函数,三角函数等的组合

e^x=Σ x^n/n!

sinx=Σ (-1)^nx^(2n+1)/(2n+1)!

cosx=Σ (-1)^nx^(2n)/(2n)!

只要把和函数凑成这样类似形式的函数就可以了

幂级数的简介:

函数项级数的概念

定义1

设函数列u1(x),u2(x),u3(x),,un(x),都在区域I上有定义,则表达式

u1(x),u2(x),u3(x),,un(x),称为定义在I上的函数项级数。

定义2

取x0属于I,则函数项级数u1(x0),u2(x0),u3(x0),,un(x0),则称为常数项级数。

若该常数项级数收敛,则称x0为的收敛点;

若该常数项级数发散,则称x0为的发散点。

定义3

函数项级数的收敛点全体的集合称为其收敛域,发散点全体的集合称为其发散域。

定义4

对于任意一点x,级数u1(x),u2(x),u3(x),,un(x),所确定的和应该是x的函数,记作:

s(x)=u1(x),u2(x),u3(x),,un(x),(x属于I)

s(x)称为定义在I上的和函数。

定义5

若用sn(x)表示函数项级数的前n项的和,

则在收敛域上有rn(x)=s-sn(x),rn(x)称为余项。

利用辅助角公式辅助角公式是李善兰先生提出的一种高等三角函数公式,使用代数式表达为asinx+bcosx=√(a²+b²)sin[x+arctan(b/a)](a>0)。虽然该公式已经被写入中学课本,但其几何意义却鲜为人知。

提出者

李善兰,原名李心兰,字竟芳,号秋纫,别号壬叔。出生于1811年 1月22日,逝世于1882年12月9日,浙江海宁人,是中国近代著名的数学、天文学、力学和植物学。

创立了二次平方根的幂级数展开式,研究各种三角函数,反三角函数和对数函数的幂级数展开式(现称“自然数幂求和公式”),这是李善兰也是19世纪中国数学界最重大的成就。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/11678445.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-17
下一篇 2023-05-17

发表评论

登录后才能评论

评论列表(0条)

保存