python – A *算法生成的噪声路径

python – A *算法生成的噪声路径,第1张

概述我正在为一个机器人项目做一个前端(一个’自主’汽车,它使用一些传感器和一个地图 – 从SVG文件生成本地化). 为了使机器人可控,我们必须在其当前位置和目标之间生成路径.我使用了最简单的算法:A *. 我得到了一些奇怪的结果:汽车倾向于达到45°的倍数,还有一个特别恼人的问题:一些生成的路径非常嘈杂! 在这种情况下,请查看橙色矩形附近的嘈杂路径: 反正有没有避免那些奇怪/嘈杂的结果?最终我们想要建 我正在为一个机器人项目做一个前端(一个’自主’汽车,它使用一些传感器和一个地图 – 从SVG文件生成本地化).

为了使机器人可控,我们必须在其当前位置和目标之间生成路径.我使用了最简单的算法:A *.

我得到了一些奇怪的结果:汽车倾向于达到45°的倍数,还有一个特别恼人的问题:一些生成的路径非常嘈杂!

在这种情况下,请查看橙色矩形附近的嘈杂路径:

反正有没有避免那些奇怪/嘈杂的结果?最终我们想要建立一个具有最小数量的航向角变化的路径. (汽车可以在不移动的情况下转弯,因此我们不需要任何路径’平滑’).

这是我的A *实现:

def search(self,begin,goal):    if goal.x not in range(self.wIDth) or goal.y not in range(self.height):        print "Goal is out of bound"        return []    elif not self.grID[begin.y][begin.x].reachable:        print "Beginning is unreachable"        return []    elif not self.grID[goal.y][goal.x].reachable:        print "Goal is unreachable"        return []    else:        self.cl = set()        self.ol = set()        curCell = begin        self.ol.add(curCell)        while len(self.ol) > 0:            # We choose the cell in the open List having the minimum score as our current cell            curCell = min(self.ol,key = lambda x : x.f)            # We add the current cell to the closed List            self.ol.remove(curCell)            self.cl.add(curCell)            # We check the cell's (reachable) neighbours :            neighbours = self.neighbours(curCell)            for cell in neighbours:                # If the goal is a neighbour cell :                if cell == goal:                    cell.parent = curCell                    self.path = cell.path()                    self.display()                    self.clear()                    return self.path                elif cell not in self.cl:                    # We process the cells that are not in the closed List                    # (processing <-> calculating the "F" score)                    cell.process(curCell,goal)                    self.ol.add(cell)

编辑1:通过popuplar需求,这里是分数计算功能(过程):

def process(self,parent,goal):    self.parent = parent    self.g = parent.distance(self)    self.h = self.manhattandistance(goal)    self.f = self.g + self.h

编辑这是邻居方法(根据user1884905的回答更新):

def neighbours(self,cell,radius = 1,unreachables = False,diagonal = True):    neighbours = set()    for i in xrange(-radius,radius + 1):        for j in xrange(-radius,radius + 1):            x = cell.x + j            y = cell.y + i            if 0 <= y < self.height and 0 <= x < self.wIDth and ( self.grID[y][x].reachable or unreachables ) and (diagonal or (x == cell.x or y == cell.y)) :                neighbours.add(self.grID[y][x])    return neighbours

(这看起来很复杂,但它只给出了一个单元的8个邻居 – 包括对角线邻居;它也可以采用与1不同的半径,因为它用于其他功能)

和距离计算(取决于对角线的使用与否:)

def manhattandistance(self,cell):    return abs(self.x - cell.x) + abs(self.y - cell.y)def diagonaldistance(self,cell):    xdist = abs(self.x - cell.x)    ydist = abs(self.y - cell.y)    if xdist > ydist:        return 1.4 * ydist + (xdist - ydist)    else:        return 1.4 * xdist + (ydist - xdist)
解决方法 如果无法看到你如何实现邻居和距离函数,我仍然可以很好地猜测出现了什么问题:

如果允许对角线遍历,则不应使用曼哈顿距离.

目标函数中的曼哈顿距离应该是距离目标的最短距离的度量. (如果你可以沿着对角线穿过积木,那就不是了.)

解决此问题的最简单方法是将曼哈顿距离保持为目标函数,并将邻居的定义更改为仅包括四个左右上下相邻单元格.

编辑

您的代码仍然存在问题.以下伪代码取自wikipedia.我已标记了您必须检查的重要行.如果找到更好的解决方案,则必须确保i)更新开放集中的节点; ii)您始终考虑先前行驶的距离.

function A*(start,goal)     closedset := the empty set    // The set of nodes already evaluated.     openset := {start}    // The set of tentative nodes to be evaluated,initially containing the start node     came_from := the empty map    // The map of navigated nodes.     g_score[start] := 0    // Cost from start along best kNown path.     // Estimated total cost from start to goal through y.     f_score[start] := g_score[start] + heuristic_cost_estimate(start,goal)     while openset is not empty         current := the node in openset having the lowest f_score[] value         if current = goal             return reconstruct_path(came_from,goal)         remove current from openset         add current to closedset         for each neighbor in neighbor_nodes(current)             // -------------------------------------------------------------------             // This is the way the tentative_g_score should be calculated.             // Do you include the current g_score in your calculation parent.distance(self) ?             tentative_g_score := g_score[current] + dist_between(current,neighbor)             // -------------------------------------------------------------------              if neighbor in closedset                 if tentative_g_score >= g_score[neighbor]                     continue             // -------------------------------------------------------------------             // You never make this comparrison             if neighbor not in openset or tentative_g_score < g_score[neighbor]             // -------------------------------------------------------------------                 came_from[neighbor] := current                 g_score[neighbor] := tentative_g_score                 f_score[neighbor] := g_score[neighbor] + heuristic_cost_estimate(neighbor,goal)                 if neighbor not in openset                     add neighbor to openset     return failure function reconstruct_path(came_from,current_node)     if current_node in came_from         p := reconstruct_path(came_from,came_from[current_node])         return (p + current_node)     else         return current_node
总结

以上是内存溢出为你收集整理的python – A *算法生成的噪声路径全部内容,希望文章能够帮你解决python – A *算法生成的噪声路径所遇到的程序开发问题。

如果觉得内存溢出网站内容还不错,欢迎将内存溢出网站推荐给程序员好友。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/1192779.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-06-03
下一篇 2022-06-03

发表评论

登录后才能评论

评论列表(0条)

保存