如何将“填充”数据框(每个单独)和“训练”数据框中的每一行的值复用?
‘火车’数据帧:
feature0 feature1 feature2 feature3 feature4 feature50 18.279579 -3.921346 13.611829 -7.250185 -11.773605 -18.265003 1 17.899545 -15.503942 -0.741729 -0.053619 -6.734652 4.398419 4 16.432750 -22.490190 -4.611659 -15.247781 -13.941488 -2.433374 5 15.905368 -4.812785 18.291712 3.742221 3.631887 -1.074326 6 16.991823 -15.946251 8.299577 8.057511 8.057510 -1.482333
‘人口’数据框:
0 1 2 3 4 5 0 1 1 0 0 0 1 1 0 1 0 1 0 0 2 0 0 0 0 0 1 3 0 0 1 0 1 1
将’population’中的每一行乘以’train’中的所有行.
结果如下:
1)从人口第1行:
feature0 feature1 feature2 feature3 feature4 feature50 18.279579 -3.921346 0 0 0 -18.265003 1 17.899545 -15.503942 0 0 0 4.398419 4 16.432750 -22.490190 0 0 0 -2.433374 5 15.905368 -4.812785 0 0 0 -1.074326 6 16.991823 -15.946251 0 0 0 -1.482333
2)从人口第2行:
feature0 feature1 feature2 feature3 feature4 feature50 0 -3.921346 0 -7.250185 0 01 0 -15.503942 0 -0.053619 0 0 4 0 -22.490190 0 -15.247781 0 0 5 0 -4.812785 0 3.742221 0 0 6 0 -15.946251 0 8.057511 0 0
等等…
解决方法 如果需要循环(如果大数据则缓慢):for i,x in population.iterrows(): print (train * x.values) feature0 feature1 feature2 feature3 feature4 feature50 18.279579 -3.921346 0.0 -0.0 -0.0 -18.2650031 17.899545 -15.503942 -0.0 -0.0 -0.0 4.3984194 16.432750 -22.490190 -0.0 -0.0 -0.0 -2.4333745 15.905368 -4.812785 0.0 0.0 0.0 -1.0743266 16.991823 -15.946251 0.0 0.0 0.0 -1.482333 feature0 feature1 feature2 feature3 feature4 feature50 0.0 -3.921346 0.0 -7.250185 -0.0 -0.01 0.0 -15.503942 -0.0 -0.053619 -0.0 0.04 0.0 -22.490190 -0.0 -15.247781 -0.0 -0.05 0.0 -4.812785 0.0 3.742221 0.0 -0.06 0.0 -15.946251 0.0 8.057511 0.0 -0.0 feature0 feature1 feature2 feature3 feature4 feature50 0.0 -0.0 0.0 -0.0 -0.0 -18.2650031 0.0 -0.0 -0.0 -0.0 -0.0 4.3984194 0.0 -0.0 -0.0 -0.0 -0.0 -2.4333745 0.0 -0.0 0.0 0.0 0.0 -1.0743266 0.0 -0.0 0.0 0.0 0.0 -1.482333 feature0 feature1 feature2 feature3 feature4 feature50 0.0 -0.0 13.611829 -0.0 -11.773605 -18.2650031 0.0 -0.0 -0.741729 -0.0 -6.734652 4.3984194 0.0 -0.0 -4.611659 -0.0 -13.941488 -2.4333745 0.0 -0.0 18.291712 0.0 3.631887 -1.0743266 0.0 -0.0 8.299577 0.0 8.057510 -1.482333
或者每行分开:
print (train * population.values[0]) feature0 feature1 feature2 feature3 feature4 feature50 18.279579 -3.921346 0.0 -0.0 -0.0 -18.2650031 17.899545 -15.503942 -0.0 -0.0 -0.0 4.3984194 16.432750 -22.490190 -0.0 -0.0 -0.0 -2.4333745 15.905368 -4.812785 0.0 0.0 0.0 -1.0743266 16.991823 -15.946251 0.0 0.0 0.0 -1.482333
或者对于MultiIndex DataFrame:
d = pd.concat([train * population.values[i] for i in range(population.shape[0])],keys=population.index.toList())print (d) feature0 feature1 feature2 feature3 feature4 feature50 0 18.279579 -3.921346 0.000000 -0.000000 -0.000000 -18.265003 1 17.899545 -15.503942 -0.000000 -0.000000 -0.000000 4.398419 4 16.432750 -22.490190 -0.000000 -0.000000 -0.000000 -2.433374 5 15.905368 -4.812785 0.000000 0.000000 0.000000 -1.074326 6 16.991823 -15.946251 0.000000 0.000000 0.000000 -1.4823331 0 0.000000 -3.921346 0.000000 -7.250185 -0.000000 -0.000000 1 0.000000 -15.503942 -0.000000 -0.053619 -0.000000 0.000000 4 0.000000 -22.490190 -0.000000 -15.247781 -0.000000 -0.000000 5 0.000000 -4.812785 0.000000 3.742221 0.000000 -0.000000 6 0.000000 -15.946251 0.000000 8.057511 0.000000 -0.0000002 0 0.000000 -0.000000 0.000000 -0.000000 -0.000000 -18.265003 1 0.000000 -0.000000 -0.000000 -0.000000 -0.000000 4.398419 4 0.000000 -0.000000 -0.000000 -0.000000 -0.000000 -2.433374 5 0.000000 -0.000000 0.000000 0.000000 0.000000 -1.074326 6 0.000000 -0.000000 0.000000 0.000000 0.000000 -1.4823333 0 0.000000 -0.000000 13.611829 -0.000000 -11.773605 -18.265003 1 0.000000 -0.000000 -0.741729 -0.000000 -6.734652 4.398419 4 0.000000 -0.000000 -4.611659 -0.000000 -13.941488 -2.433374 5 0.000000 -0.000000 18.291712 0.000000 3.631887 -1.074326 6 0.000000 -0.000000 8.299577 0.000000 8.057510 -1.482333
并按xs
选择:
print (d.xs(0)) feature0 feature1 feature2 feature3 feature4 feature50 18.279579 -3.921346 0.0 -0.0 -0.0 -18.2650031 17.899545 -15.503942 -0.0 -0.0 -0.0 4.3984194 16.432750 -22.490190 -0.0 -0.0 -0.0 -2.4333745 15.905368 -4.812785 0.0 0.0 0.0 -1.0743266 16.991823 -15.946251 0.0 0.0 0.0 -1.482333总结
以上是内存溢出为你收集整理的python – 将两个不同数据帧中每行的值相乘全部内容,希望文章能够帮你解决python – 将两个不同数据帧中每行的值相乘所遇到的程序开发问题。
如果觉得内存溢出网站内容还不错,欢迎将内存溢出网站推荐给程序员好友。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)