>> X = csr_matrix([[0,2,2],[0,1]])>> print type(X) >> print X.todense() <class 'scipy.sparse.csr.csr_matrix'>[[0 2 0 2] [0 2 0 1]]
矩阵Y:
>> print type(Y)>> print text_scores<class 'numpy.matrixlib.defmatrix.matrix'>[[8] [5]]
…如何将X的每个元素乘以Y的行.例如:
[[0*8 2*8 0*8 2*8] [0*5 2*5 0*5 1*5]]
要么:
[[0 16 0 16] [0 10 0 5]]
我已经厌倦了这个,但显然它不起作用,因为尺寸不匹配:
Z = X.data * Y.
# Assuming that Y is 1D,might need to do Y = Y.A.ravel() or such...# just to make the point that this works only with CSR:if not isinstance(X,scipy.sparse.csr_matrix): raise ValueError('Matrix must be CSR.')Z = X.copy()# simply repeat each value in Y by the number of nnz elements in each row: Z.data *= Y.repeat(np.diff(Z.indptr))
这确实会产生一些临时性,但至少它是完全矢量化的,并且它不会使稀疏矩阵变得密集.
对于COO矩阵,等价物是:
Z.data *= Y[Z.row] # you can use np.take which is faster then indexing.
对于CSC矩阵,等价物将是:
Z.data *= Y[Z.indices]总结
以上是内存溢出为你收集整理的python – 将稀疏数组中的元素与矩阵中的行相乘全部内容,希望文章能够帮你解决python – 将稀疏数组中的元素与矩阵中的行相乘所遇到的程序开发问题。
如果觉得内存溢出网站内容还不错,欢迎将内存溢出网站推荐给程序员好友。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)