List_prices = [12,12.7,13.5,14.3]List_amounts = [85,100,30,54]BuyAmount = x
我想知道我的加权平均价格,以及我为每双鞋支付的最高价格如果我购买x量的鞋子(假设我想先买最便宜的)
这就是我现在拥有的(我使用numpy):
if List_amounts[0] >= BuyAmount: avgprice = List_prices[0] highprice = List_prices[0] elif (sum(List_amounts[0: 2])) >= BuyAmount: avgprice = np.average(List_prices[0: 2],weights=[List_amounts[0],BuyAmount - List_amounts[0]]) highprice = List_prices[1] elif (sum(List_amounts[0: 3])) >= BuyAmount: avgprice = np.average(List_prices[0: 3],List_amounts[1],BuyAmount - (sum(List_amounts[0: 2]))]) highprice = List_prices[2] elif (sum(List_amounts[0: 4])) >= BuyAmount: avgprice = np.average(List_prices[0: 4],List_amounts[2],BuyAmount - (sum(List_amounts[0: 3]))]) highprice = List_prices[3] print(avgprice) print(highprice)
此代码有效,但可能过于复杂和广泛.特别是因为我想能够处理20个项目的金额和价格表.
有什么更好的方法呢?
解决方法 这是一个通用的矢量化解决方案,使用cumsum替换那些切片的摘要和argmax,以获得用于设置IF-case *** 作的切片限制的适当索引 –# Use cumsum to replace sliced summations - Basically all those # `List_amounts[0]`,`sum(List_amounts[0: 2]))`,`sum(List_amounts[0: 3])`,etc.c = np.cumsum(List_amounts)# Use argmax to decIDe the slicing limits for the intended slicing operations.# So,this would replace the last number in the slices - # List_prices[0: 2],List_prices[0: 3],etc.IDx = (c >= BuyAmount).argmax()# Use the slicing limit to get the slice off List_prices needed as the first# input to numpy.averagel = List_prices[:IDx+1]# This step gets us the weights. Now,in the weights we have two parts. E.g.# for the third-IF we have : # [List_amounts[0],BuyAmount - (sum(List_amounts[0: 2]))]# Here,we would slice off List_amounts limited by `IDx`.# The second part is sliced summation limited by `IDx` again.w = np.r_[List_amounts[:IDx],BuyAmount - c[IDx-1]]# Finally,plug-in the two inputs to np.average and get avgprice output.avgprice = np.average(l,weights=w)# Get IDx element off List_prices as the highprice output.highprice = List_prices[IDx]
我们可以进一步优化以删除连接步骤(使用np.r_)并获得avgprice,就像这样 –
slice1_sum = np.multiply(List_prices[:IDx],List_amounts[:IDx]).sum() # or np.dot(List_prices[:IDx],List_amounts[:IDx])slice2_sum = List_prices[IDx]*(BuyAmount - c[IDx-1])weight_sum = np.sum(List_amounts[:IDx]) + BuyAmount - c[IDx-1]avgprice = (slice1_sum+slice2_sum)/weight_sum总结
以上是内存溢出为你收集整理的如何获得一个列表的加权平均值,它的权重受Python 3.6中的变量的限制全部内容,希望文章能够帮你解决如何获得一个列表的加权平均值,它的权重受Python 3.6中的变量的限制所遇到的程序开发问题。
如果觉得内存溢出网站内容还不错,欢迎将内存溢出网站推荐给程序员好友。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)