前言
本文将由浅入深详细介绍yIEld以及generator,包括以下内容:什么generator,生成generator的方法,generator的特点,generator基础及高级应用场景,generator使用中的注意事项。本文不包括enhanced generator即pep342相关内容,这部分内容在之后介绍。
generator基础
在python的函数(function)定义中,只要出现了yIEld表达式(YIEld Expression),那么事实上定义的是一个generator function, 调用这个generator function
返回值是一个generator。这根普通的函数调用有所区别,For example:
从上面的代码可以看出,gen_generator
函数返回的是一个generator实例
generator有以下特别:
•遵循迭代器(iterator)协议,迭代器协议需要实现__iter__
、next接口
•能过多次进入、多次返回,能够暂停函数体中代码的执行
下面看一下测试代码:
@H_502_19@>>> def gen_example():... print 'before any yIEld'... yIEld 'first yIEld'... print 'between yIElds'... yIEld 'second yIEld'... print 'no yIEld anymore'... >>> gen = gen_example()>>> gen.next() # 第一次调用nextbefore any yIEld'first yIEld'>>> gen.next() # 第二次调用nextbetween yIElds'second yIEld'>>> gen.next() # 第三次调用nextno yIEld anymoreTraceback (most recent call last): file "<stdin>",line 1,in <module>StopIteratio调用gen example方法并没有输出任何内容,说明函数体的代码尚未开始执行。当调用generator的next方法,generator会执行到yIEld 表达式处,返回yIEld表达式的内容,然后暂停(挂起)在这个地方,所以第一次调用next打印第一句并返回“first yIEld”。 暂停意味着方法的局部变量,指针信息,运行环境都保存起来,直到下一次调用next方法恢复。第二次调用next之后就暂停在最后一个yIEld,再次调用next()
方法,则会抛出stopiteration异常。
因为for语句能自动捕获stopiteration异常,所以generator(本质上是任何iterator)较为常用的方法是在循环中使用:
@H_502_19@def generator_example(): yIEld 1 yIEld 2if __name__ == '__main__': for e in generator_example(): print e # output 1 2generator function产生的generator与普通的function有什么区别呢
(1)function每次都是从第一行开始运行,而generator从上一次yIEld开始的地方运行
(2)function调用一次返回一个(一组)值,而generator可以多次返回
(3)function可以被无数次重复调用,而一个generator实例在yIEld最后一个值 或者return之后就不能继续调用了
在函数中使用YIEld,然后调用该函数是生成generator的一种方式。另一种常见的方式是使用generator Expression
,For example:
generator应用
generator基础应用
为什么使用generator呢,最重要的原因是可以按需生成并“返回”结果,而不是一次性产生所有的返回值,况且有时候根本就不知道“所有的返回值”。
比如对于下面的代码
@H_502_19@RANGE_NUM = 100 for i in [x*x for x in range(RANGE_NUM)]: # 第一种方法:对列表进行迭代 # do sth for example print i for i in (x*x for x in range(RANGE_NUM)): # 第二种方法:对generator进行迭代 # do sth for example print i在上面的代码中,两个for语句输出是一样的,代码字面上看来也就是中括号与小括号的区别。但这点区别差异是很大的,第一种方法返回值是一个列表,第二个方法返回的是一个generator对象。随着RANGE_NUM的变大,第一种方法返回的列表也越大,占用的内存也越大;但是对于第二种方法没有任何区别。
我们再来看一个可以“返回”无穷多次的例子:
@H_502_19@def fib(): a,b = 1,1 while True: yIEld a a,b = b,a+b这个generator拥有生成无数多“返回值”的能力,使用者可以自己决定什么时候停止迭代
generator高级应用
使用场景一:
Generator可用于产生数据流, generator并不立刻产生返回值,而是等到被需要的时候才会产生返回值,相当于一个主动拉取的过程(pull),比如现在有一个日志文件,每行产生一条记录,对于每一条记录,不同部门的人可能处理方式不同,但是我们可以提供一个公用的、按需生成的数据流。
@H_502_19@def gen_data_from_file(file_name): for line in file(file_name): yIEld linedef gen_words(line): for word in (w for w in line.split() if w.strip()): yIEld worddef count_words(file_name): word_map = {} for line in gen_data_from_file(file_name): for word in gen_words(line): if word not in word_map: word_map[word] = 0 word_map[word] += 1 return word_mapdef count_total_chars(file_name): total = 0 for line in gen_data_from_file(file_name): total += len(line) return total if __name__ == '__main__': print count_words('test.txt'),count_total_chars('test.txt')上面的例子来自08年的PyCon一个讲座。gen_words gen_data_from_file
是数据生产者,而count_words count_total_chars是数据的消费者。可以看到,数据只有在需要的时候去拉取的,而不是提前准备好。另外gen_words中 (w for w in line.split() if w.strip())
也是产生了一个generator
使用场景二:
一些编程场景中,一件事情可能需要执行一部分逻辑,然后等待一段时间、或者等待某个异步的结果、或者等待某个状态,然后继续执行另一部分逻辑。比如微服务架构中,服务A执行了一段逻辑之后,去服务B请求一些数据,然后在服务A上继续执行。或者在游戏编程中,一个技能分成分多段,先执行一部分动作(效果),然后等待一段时间,然后再继续。对于这种需要等待、而又不希望阻塞的情况,我们一般使用回调(callback)的方式。下面举一个简单的例子:
@H_502_19@ def do(a): print 'do',a CallBackMgr.callback(5,lambda a = a: post_do(a)) def post_do(a): print 'post_do',a这里的CallBackMgr注册了一个5s后的时间,5s之后再调用lambda
函数,可见一段逻辑被分裂到两个函数,而且还需要上下文的传递(如这里的参数a)。我们用yIEld来修改一下这个例子,yIEld返回值代表等待的时间。
这里需要实现一个YIEldManager, 通过yIEld_dec
这个decrator将do这个generator注册到YIEldManager,并在5s后调用next方法。YIEld版本实现了和回调一样的功能,但是看起来要清晰许多。
下面给出一个简单的实现以供参考:
@H_502_19@# -*- Coding:utf-8 -*-import sys# import Timerimport typesimport timeclass YIEldManager(object): def __init__(self,tick_delta = 0.01): self.generator_dict = {} # self._tick_timer = Timer.addRepeatTimer(tick_delta,lambda: self.tick()) def tick(self): cur = time.time() for gene,t in self.generator_dict.items(): if cur >= t: self._do_resume_genetator(gene,cur) def _do_resume_genetator(self,gene,cur ): try: self.on_generator_excute(gene,cur) except stopiteration,e: self.remove_generator(gene) except Exception,e: print 'unexcepet error',type(e) self.remove_generator(gene) def add_generator(self,gen,deadline): self.generator_dict[gen] = deadline def remove_generator(self,gene): del self.generator_dict[gene] def on_generator_excute(self,cur_time = None): t = gen.next() cur_time = cur_time or time.time() self.add_generator(gen,t + cur_time)g_yIEld_mgr = YIEldManager()def yIEld_dec(func): def _inner_func(*args,**kwargs): gen = func(*args,**kwargs) if type(gen) is types.GeneratorType: g_yIEld_mgr.on_generator_excute(gen) return gen return _inner_func@yIEld_decdef do(a): print 'do',a yIEld 2.5 print 'post_do',a yIEld 3 print 'post_do again',aif __name__ == '__main__': do(1) for i in range(1,10): print 'simulate a timer,%s seconds passed' % i time.sleep(1) g_yIEld_mgr.tick()注意事项:
(1)YIEld是不能嵌套的!
上面的代码访问嵌套序列里面的每一个元素,我们期望的输出是1 2 3 4 5,而实际输出是1 2 5 。为什么呢,如注释所示,visit是一个generator function
,所以第4行返回的是generator object
,而代码也没这个generator实例迭代。那么改改代码,对这个临时的generator 进行迭代就行了。
或者在python3.3中 可以使用yIEld from
,这个语法是在pep380加入的
(2)generator function中使用return
在python doc中,明确提到是可以使用return的,当generator执行到这里的时候抛出stopiteration异常。
@H_502_19@def gen_with_return(range_num): if range_num < 0: return else: for i in xrange(range_num): yIEld iif __name__ == '__main__': print List(gen_with_return(-1)) print List(gen_with_return(1))但是,generator function
中的return是不能带任何返回值的
上面的代码会报错:SyntaxError: 'return' with argument insIDe generator
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助,如果有疑问大家可以留言交流,谢谢大家对编程小技巧的支持。
总结以上是内存溢出为你收集整理的由浅入深讲解python中的yield与generator全部内容,希望文章能够帮你解决由浅入深讲解python中的yield与generator所遇到的程序开发问题。
如果觉得内存溢出网站内容还不错,欢迎将内存溢出网站推荐给程序员好友。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)