1、python装饰器
刚刚接触python的装饰器,简直懵逼了,直接不懂什么意思啊有木有,自己都忘了走了多少遍DeBUG,查了多少遍资料,猜有点点开始明白了。总结了一下解释得比较好的,通俗易懂的来说明一下:
小P闲来无事,随便翻看自己以前写的一些函数,忽然对一个最最最基础的函数起了兴趣:
def sum1(): sum = 1 + 2 print(sum) sum1()
此时小P想看看这个函数执行用了多长时间,所以写了几句代码插进去了:
import time def sum1(): start = time.clock() sum = 1+2 print(sum) end = time.clock() print("time used:",end - start) sum1()
运行之后,完美~~
可是随着继续翻看,小P对越来越多的函数感兴趣了,都想看下他们的运行时间如何,难道要一个一个的去改函数吗?当然不是!我们可以考虑重新定义一个函数timeit,将sum1的引用传递给他,然后在timeit中调用sum1并进行计时,这样,我们就达到了不改动sum1定义的目的,而且,不论小P看了多少个函数,我们都不用去修改函数定义了!
import timedef sum1(): sum = 1+ 2 print (sum)def timeit(func): start = time.clock() func() end =time.clock() print("time used:",end - start)timeit(sum1)
咂一看,没啥问题,可以运行!但是还是修改了一部分代码,把sum1() 改成了timeit(sum1)。这样的话,如果sum1在N处都被调用了,你就不得不去修改这N处的代码。所以,我们就需要杨sum1()具有和timeit(sum1)一样的效果,于是将timeit赋值给sum1。可是timeit是有参数的,所以需要找个方法去统一参数,将timeit(sum1)的返回值(计算运行时间的函数)赋值给sum1。
import time def sum1(): sum = 1+ 2 print (sum) def timeit(func): def test(): start = time.clock() func() end =time.clock() print("time used:",end - start) return test sum1 = timeit(sum1) sum1()
这样一个简易的装饰器就做好了,我们只需要在定义sum1以后调用sum1之前,加上sum1= timeit(sum1),就可以达到计时的目的,这也就是装饰器的概念,看起来像是sum1被timeit装饰了!Python于是提供了一个语法糖来降低字符输入量。
import time def timeit(func): def test(): start = time.clock() func() end =time.clock() print("time used:",end - start) return test @timeit def sum1(): sum = 1+ 2 print (sum) sum1()
重点关注第11行的@timeit,在定义上加上这一行与另外写sum1 = timeit(sum1)完全等价。
递归算法是一种直接或者间接地调用自身算法的过程。在计算机编写程序中,递归算法对解决一大类问题是十分有效的,它往往使算法的描述简洁而且易于理解。
递归算法解决问题的特点:
(1) 递归就是在过程或函数里调用自身。
(2) 在使用递归策略时,必须有一个明确的递归结束条件,称为递归出口。
(3) 递归算法解题通常显得很简洁,但递归算法解题的运行效率较低。所以一般不提倡用递归算法设计程序。
(4) 在递归调用的过程当中系统为每一层的返回点、局部量等开辟了栈来存储。递归次数过多容易造成栈溢出等。所以一般不提倡用递归算法设计程序。
举个栗子:对一个数字进行除2求值,直到小于等于1时退出并输出结果
def divIDe(n,val): n += 1 print(val) if val / 2 > 1: aa = divIDe(n,val/2) print('the num is %d,aa is %f' % (n,aa)) print('the num is %d,val is %f' % (n,val)) return(val)divIDe(0,50.0)
结果说明(不return时相当于嵌套循环,一层层进入在一层层退出):
50.025.012.56.253.1251.5625the num is 6,val is 1.562500the num is 5,aa is 1.562500the num is 5,val is 3.125000the num is 4,aa is 3.125000the num is 4,val is 6.250000the num is 3,aa is 6.250000the num is 3,val is 12.500000the num is 2,aa is 12.500000the num is 2,val is 25.000000the num is 1,aa is 25.000000the num is 1,val is 50.000000
2、递归时return:
def divIDe(n,aa)) return(aa) print('the num is %d,50.0)
结果说明(return时就直接结束本次 *** 作):
50.025.012.56.253.1251.5625the num is 6,aa is 1.562500the num is 4,aa is 1.562500the num is 3,aa is 1.562500the num is 2,aa is 1.562500the num is 1,aa is 1.562500
用递归实现斐波那契函数
def feibo(first,second,stop,List): if first >= stop or second >= stop: return List else: sum = first + second List.append(sum) if sum <= stop: return feibo(second,sum,List) return Listif __name__ == '__main__': first = int(raw_input('please input the first number:')) second = int(raw_input('please input the second number:')) stop = int(raw_input('please input the stop number:')) l = [first,second] a = feibo(first,l) print(a)总结
以上是内存溢出为你收集整理的python装饰器与递归算法详解全部内容,希望文章能够帮你解决python装饰器与递归算法详解所遇到的程序开发问题。
如果觉得内存溢出网站内容还不错,欢迎将内存溢出网站推荐给程序员好友。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)