以下是我的代码,但我想摆脱循环:
import numpy as npimport scipy.sparse def coord_transform_n(r,Alpha): """Alpha: the n-2 values between [0,\pi) and last one between [0,2\pi) """ x=[] for i in range(Alpha.shape[0]): x.append(r*np.prod(np.sin(Alpha[0:i]))*np.cos(Alpha[i])) return np.asarray(x) print coord_transform_n(1,np.asarray(np.asarray([1,2])))解决方法 您可以通过记忆中间产品来加速您的原始代码,即
def ct_dynamic(r,Alpha): """Alpha: the n-2 values between [0,2\pi) """ x = np.zeros(len(Alpha) + 1) s = 1 for e,a in enumerate(Alpha): x[e] = s*np.cos(a) s *= np.sin(a) x[len(Alpha)] = s return x*r
但仍然在速度上失去基于numpy的方法
def ct(r,arr): a = np.concatenate((np.array([2*np.pi]),arr)) si = np.sin(a) si[0] = 1 si = np.cumprod(si) co = np.cos(a) co = np.roll(co,-1) return si*co*r>>> n = 10>>> c = np.random.random_sample(n)*np.pi>>> all(ct(1,c) == ct_dynamic(1,c))True>>> timeit.timeit('from __main__ import coord_transform_n as f,c; f(2.4,c)',number=10000)2.213547945022583>>> timeit.timeit('from __main__ import ct_dynamic as f,number=10000)0.9227950572967529>>> timeit.timeit('from __main__ import ct as f,number=10000)0.5197498798370361总结
以上是内存溢出为你收集整理的python – n球面坐标系到笛卡尔坐标系全部内容,希望文章能够帮你解决python – n球面坐标系到笛卡尔坐标系所遇到的程序开发问题。
如果觉得内存溢出网站内容还不错,欢迎将内存溢出网站推荐给程序员好友。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)