我之前已经问了一个类似的问题
(Training multiple Sequential models in a row slows down)
并看到其他类似问题(Keras: Out of memory when doing hyper parameter grid search)
并且解决方案始终是在完成模型使用后将K.clear_session()添加到代码中.所以我在上一个问题中做到了这一点,我仍在泄露记忆
这是重现问题的代码.
import randomimport timefrom keras.models import Sequentialfrom keras.layers import Densefrom keras import backend as Kimport tracemallocdef run(): tracemalloc.start() num_input_nodes = 12 num_hIDden_nodes = 8 num_output_nodes = 1 random_numbers = random.sample(range(1000),50) train_x,train_y = create_training_dataset(random_numbers,num_input_nodes) for i in range(100): snapshot = tracemalloc.take_snapshot() for j in range(10): start_time = time.time() nn = Sequential() nn.add(Dense(num_hIDden_nodes,input_dim=num_input_nodes,activation='relu')) nn.add(Dense(num_output_nodes)) nn.compile(loss='mean_squared_error',optimizer='adam') nn.fit(train_x,train_y,nb_epoch=300,batch_size=2,verbose=0) K.clear_session() print("Iteration {iter}. Current time {t}. Took {elapsed} seconds". format(iter=i*10 + j + 1,t=time.strftime('%H:%M:%s'),elapsed=int(time.time() - start_time))) top_stats = tracemalloc.take_snapshot().compare_to(snapshot,'lineno') print("[ top 5 differences ]") for stat in top_stats[:5]: print(stat)def create_training_dataset(dataset,input_nodes): """ Outputs a training dataset (train_x,train_y) as numpy arrays. Each item in train_x has 'input_nodes' number of items while train_y items are of size 1 :param dataset: List of ints :param input_nodes: :return: (numpy array,numpy array),train_x,train_y """ data_x,data_y = [],[] for i in range(len(dataset) - input_nodes - 1): a = dataset[i:(i + input_nodes)] data_x.append(a) data_y.append(dataset[i + input_nodes]) return numpy.array(data_x),numpy.array(data_y)run()
这是我从第一个内存调试打印得到的输出
/tensorflow/python/framework/ops.py:121:size = 3485 KiB(3485 KiB),count = 42343(42343)
/tensorflow/python/framework/ops.py:1400:size = 998 KiB(998 KiB),count = 8413(8413)
/tensorflow/python/framework/ops.py:116:size = 888 KiB(888 KiB),count = 32468(32468)
/tensorflow/python/framework/ops.py:1185:size = 795 KiB(795 KiB),count = 3179(3179)
/tensorflow/python/framework/ops.py:2354:size = 599 KiB(599 KiB),count = 5886(5886)
系统信息:
> python 3.5
> keras(1.2.2)
> tensorflow(1.0.0)
调用K.clear_session()释放了迭代之间与默认图关联的一些(后端)状态,但需要额外调用tf.reset_default_graph()
来清除Python状态.
请注意,可能存在更有效的解决方案:由于nn不依赖于任何一个循环变量,因此可以在循环外定义它,并在循环内重用相同的实例.如果这样做,则无需清除会话或重置默认图表,并且性能会提高,因为您可以从迭代之间的缓存中受益.
总结以上是内存溢出为你收集整理的python-3.x – Keras(TensorFlow,CPU):训练循环中的顺序模型吃掉内存全部内容,希望文章能够帮你解决python-3.x – Keras(TensorFlow,CPU):训练循环中的顺序模型吃掉内存所遇到的程序开发问题。
如果觉得内存溢出网站内容还不错,欢迎将内存溢出网站推荐给程序员好友。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)