离散傅里叶变换常用公式表是:cosωbai0t=[exp(jω0t)+exp(-jω0t)]/2。
傅里叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的。
Fourier transform或Transformée de Fourier有多个中文译名,常见的有“傅里叶变换”、“付立叶变换”、“傅立叶转换”、“傅氏转换”、“傅氏变换”、等等。
傅里叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅立叶变换用正弦波作为信号的成分。
傅里叶是一位法国数学家和物理学家的名字,英语原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier对热传递很感兴趣,于1807年在法国科学学会上发表了一篇论文,运用正弦曲线来描述温度分布。
论文里有个在当时具有争议性的决断:任何连续周期信号可以由一组适当的正弦曲线组合而成。当时审查这个论文的人,其中有两位是历史上著名的数学家拉格朗日(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace, 1749-1827)。
当拉普拉斯和其它审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在他此后生命的六年中,拉格朗日坚持认为傅里叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。
法国科学学会屈服于拉格朗日的威望,拒绝了傅里叶的工作,幸运的是,傅里叶还有其它事情可忙,他参加了政治运动,随拿破仑远征埃及,法国大革命后因会被推上断头台而一直在逃避。直到拉格朗日死后15年这个论文才被发表出来。
傅里叶级数得名于法国数学家约瑟夫·傅里叶,他提出任何函数都可以展开为三角级数。
考虑一个在区间 上可积的函数 ,其傅里叶级数为
其中
由欧拉公式 得
代入(1)可得
令
则可以得到傅里叶级数的复数形式
其中
傅里叶变换可以看作傅里叶级数的连续形式。
首先考虑定义在 上的函数的傅里叶级数展开:
其中
令
记
则
当 时, , , (14) 中的求和变为积分
相应地,(12) 变为
(16) 称为傅里叶变换,记作 ;(15) 称为傅里叶变换的逆变换,记作 。在信号分析中, 称为信号的时域表示, 称为信号的频域表示。
需要明确的是,不管是用时域还是用频域来表示一个信号,它们代表的都是同一个信号。可以从线性空间的角度理解这一点。同一个信号在不同的表象(或者说基向量)下具有不同的坐标。同一个向量在不同表象下的坐标可以通过一个线性变换联系起来。如果是有限维的空间,这个线性变换可以表示为一个矩阵。而傅里叶变换则是无限维空间不同表象之间的一种变换。举例来说,在量子力学中,一个波函数的坐标表象到动量表象间的变换就是一个傅里叶变换。
也可以将角频率 替换为自然频率 ,有 ,则
一般情况下,我们处理的信号都是离散的。取 在时间上的离散采样
是采样的时间间隔。傅里叶变换只能作用在连续函数上,为此我们引入
其中
为 Dirac 函数。 称为 Dirac 梳子,亦称 Shah 分布,是一个采样函数,常用在数字信号处理和离散时间信号分析中。
对 作傅里叶变换
这里利用了 Dirac 函数的性质 。(22) 即为离散时间傅里叶变换。
下面简单介绍一下采样定理。若原信号 不包含高于 的频率,即 ,则只要采样频率 ,时域采样就能完全重建原信号。
将 在 上展开为傅里叶级数
其中
注意到 时 ,而 ,故 时 ,因此 (24) 可改写为
代入 (23),得
这里 。(26) 说明原信号的傅里叶变换可以由采样信号确定,进而可以利用傅里叶逆变换重建原信号。
此外,不难发现
是一个周期为 的周期函数。离散傅里叶变换 可以看作原信号连续傅里叶变换 的周期延拓,时域的离散化造成了频域的周期化。
离散时间傅里叶变换在频域上仍然是连续的。如果把频域也离散化,就得到了离散傅里叶变换。
也可以写成矩阵形式
其中 。
离散傅里叶变换的逆变换为
直接根据定义计算离散傅里叶变换的复杂度是 。快速傅里叶变换是快速计算离散傅里叶变换及其逆变换的一类数值算法。FFT 通过把 DFT 矩阵分解为稀疏矩阵之积,能够将复杂度降低到 。
在 Python 中可以利用 scipyfftpack 进行快速傅里叶变换。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)