关于椭圆,双曲线,抛物线的所有应用公式?

关于椭圆,双曲线,抛物线的所有应用公式?,第1张

双曲线的标准公式为:  X^2/a^2 - Y^2/b^2 = 1(a>0,b>0)而反比例函数的标准型是 xy = c (c ≠ 0)但是反比例函数确实是双曲线函数经过旋转得到的 因为xy = c的对称轴是 y=x, y=-x 而X^2/a^2 - Y^2/b^2 = 1的对称轴是x轴,y轴 所以应该旋转45度 设旋转的角度为 a (a≠0,顺时针)(a为双曲线渐进线的倾斜角) 则有X = xcosa ysina Y = - xsina ycosa 取 a = π/4 则 X^2 - Y^2 = (xcos(π/4) ysin(π/4))^2 -(xsin(π/4) - ycos(π/4))^2 = (√2/2 x √2/2 y)^2 -(√2/2 x - √2/2 y)^2 = 4 (√2/2 x) (√2/2 y) = 2xy 而xy=c 所以 X^2/(2c) - Y^2/(2c) = 1 (c>0) Y^2/(-2c) - X^2/(-2c) = 1 (c<0)

 由此证得,反比例函数其实就是双曲线函数

椭圆的面积公式

 S=π(圆周率)×a×b(其中a,b分别是椭圆的长半轴,短半轴的长)

 或S=π(圆周率)×A×B/4(其中A,B分别是椭圆的长轴,短轴的长)

 椭圆的周长公式

 椭圆周长没有公式,有积分式或无限项展开式。

椭圆周长(L)的精确计算要用到积分或无穷级数的求和。如

L = ∫[0,π/2]4a sqrt(1-(ecost)^2)dt≈2π√((a^2 b^2)/2) [椭圆近似周长], 其中a为椭圆长半轴,e为离心率

 椭圆离心率的定义为椭圆上的点到某焦点的距离和该点到该焦点对应的准线的距离之比,设椭圆上点P到某焦点距离为PF,到对应准线距离为PL,则

 e=PF/PL

 椭圆的准线方程

 x=±a^2/C

 椭圆的离心率公式

 e=c/a(e<1,因为2a>2c)

 椭圆的焦准距 :椭圆的焦点与其相应准线(如焦点(c,0)与准线x= a^2/C)的距离,数值=b^2/c

 椭圆焦半径公式 |PF1|=a ex0 |PF2|=a-ex0

 椭圆过右焦点的半径r=a-ex

过左焦点的半径r=a ex

椭圆的通径:过焦点的垂直于x轴(或y轴)的直线与椭圆的两焦点A,B之间的距离,数值=2b^2/a

 点与椭圆位置关系 点M(x0,y0) 椭圆 x^2/a^2 y^2/b^2=1

 点在圆内: x0^2/a^2 y0^2/b^2<1

 点在圆上: x0^2/a^2 y0^2/b^2=1

 点在圆外: x0^2/a^2 y0^2/b^2>1

 直线与椭圆位置关系

y=kx m ①

 x^2/a^2 y^2/b^2=1 ②

 由①②可推出x^2/a^2 (kx m)^2/b^2=1

 相切△=0

 相离△<0无交点

 相交△>0 可利用弦长公式:A(x1,y1) B(x2,y2)

 |AB|=d = √(1 k^2)|x1-x2| = √(1 k^2)(x1-x2)^2 = √(1 1/k^2)|y1-y2| = √(1 1/k^2)(y1-y2)^2

椭圆通径(定义:圆锥曲线(除圆外)中,过焦点并垂直于轴的弦)公式:2b^2/a

 椭圆的斜率公式 过椭圆上x^2/a^2 y^2/b^2上一点(x,y)的切线斜率为b^2X/a^2y

抛物线的标准方程  右开口抛物线:y^2=2px

 左开口抛物线:y^2=-2px

上开口抛物线:x^2=2py

下开口抛物线:x^2=-2py

 p为焦准距(p>0) [编辑本段]3抛物线相关参数(对于向右开口的抛物线)

 离心率:e=1

 焦点:(p/2,0)

 准线方程l:x=-p/2

 顶点:(0,0)

 通径(定义:圆锥曲线(除圆外)中,过焦点并垂直于轴的弦):2P [编辑本段]4它的解析式求法:

 以焦点在X轴上为例

 知道P(x0,y0)

 令所求为y^2=2px

 则有y0^2=2px0

 ∴2p=y0^2/x0

 ∴抛物线为y^2=(y0^2/x0)x [编辑本段]5抛物线的光学性质:

 经过焦点的光线经抛物线反射后的光线平行抛物线的对称轴。 [编辑本段]6抛物线的一段的面积和弧长公式

 

面积 Area=2ab/3

 弧长 Arc length ABC

 =√(b^2 16a^2 )/2 b^2/8a ln((4a √(b^2 16a^2 ))/b) [编辑本段]7其他

 抛物线:y = ax^2 bx c (a≠0)

 就是y等于ax 的平方加上 bx再加上 c

a > 0时开口向上

a < 0时开口向下

c = 0时抛物线经过原点

b = 0时抛物线对称轴为y轴

还有顶点式y = a(x-h)^2 k

就是y等于a乘以(x-h)的平方 k

h是顶点坐标的x

k是顶点坐标的y 标准形式的抛物线在x0,y0点的切线就是

椭圆是一种圆锥曲线(也有人叫圆锥截线的)

  1、平面上到两点距离之和为定值的点的集合(该定值大于两点间距离,一般称为2a)(这两个定点也称为椭圆的焦点,焦点之间的距离叫做焦距);

  2、平面上到定点距离与到定直线间距离之比为常数的点的集合(定点不在定直线上,该常数为小于1的正数)(该定点为椭圆的焦点,该直线称为椭圆的准线)。这两个定义是等价的; [编辑本段]2标准方程  高中课本在平面直角坐标系中,用方程描述了椭圆,椭圆的标准方程中的“标准”指的是中心在原点,对称轴为坐标轴。

  椭圆的标准方程有两种,取决于焦点所在的坐标轴:

  1)焦点在X轴时,标准方程为:x^2/a^2+y^2/b^2=1 (a>b>0)

  2)焦点在Y轴时,标准方程为:x^2/b^2+y^2/a^2=1 (a>b>0)

  其中a>0,b>0。a、b中较大者为椭圆长半轴长,较短者为短半轴长(椭圆有两条对称轴,对称轴被椭圆所截,有两条线段,它们的一半分别叫椭圆的长半轴和短半轴或半长轴和半短轴)当a>b时,焦点在x轴上,焦距为2(a^2-b^2)^05,焦距与长短半轴的关系:b^2=a^2-c^2 ,准线方程是x=a^2/c和x=-a^2/c

  又及:如果中心在原点,但焦点的位置不明确在X轴或Y轴时,方程可设为mx^2+ny^2=1(m>0,n>0,m≠n)。既标准方程的统一形式。

  椭圆的面积是πab。椭圆可以看作圆在某方向上的拉伸,它的参数方程是:x=acosθ , y=bsinθ

  标准形式的椭圆在x0,y0点的切线就是 : xx0/a^2+yy0/b^2=1 [编辑本段]3公式  椭圆的面积公式

  S=π(圆周率)×a×b(其中a,b分别是椭圆的长半轴,短半轴的长)

  或S=π(圆周率)×A×B/4(其中A,B分别是椭圆的长轴,短轴的长)

  椭圆的周长公式

  椭圆周长没有公式,有积分式或无限项展开式。

  椭圆周长(L)的精确计算要用到积分或无穷级数的求和。如

  L = ∫[0,π/2]4a sqrt(1-(ecost)^2)dt≈2π√((a^2+b^2)/2) [椭圆近似周长], 其中a为椭圆长半轴,e为离心率

  椭圆离心率的定义为椭圆上的点到某焦点的距离和该点到该焦点对应的准线的距离之比,设椭圆上点P到某焦点距离为PF,到对应准线距离为PL,则

  e=PF/PL

  椭圆的准线方程

  x=±a^2/C

  椭圆的离心率公式

  e=c/a(e<1,因为2a>2c)

  椭圆的焦准距 :椭圆的焦点与其相应准线(如焦点(c,0)与准线x=+a^2/C)的距离,数值=b^2/c

  椭圆焦半径公式 |PF1|=a+ex0 |PF2|=a-ex0

  椭圆过右焦点的半径r=a-ex

  过左焦点的半径r=a+ex

  椭圆的通径:过焦点的垂直于x轴(或y轴)的直线与椭圆的两焦点A,B之间的距离,数值=2b^2/a

  点与椭圆位置关系 点M(x0,y0) 椭圆 x^2/a^2+y^2/b^2=1

  点在圆内: x0^2/a^2+y0^2/b^2<1

  点在圆上: x0^2/a^2+y0^2/b^2=1

  点在圆外: x0^2/a^2+y0^2/b^2>1

  直线与椭圆位置关系

  y=kx+m ①

  x^2/a^2+y^2/b^2=1 ②

  由①②可推出x^2/a^2+(kx+m)^2/b^2=1

  相切△=0

  相离△<0无交点

  相交△>0 可利用弦长公式:A(x1,y1) B(x2,y2)

  |AB|=d = √(1+k^2)|x1-x2| = √(1+k^2)(x1-x2)^2 = √(1+1/k^2)|y1-y2| = √(1+1/k^2)(y1-y2)^2

  椭圆通径(定义:圆锥曲线(除圆外)中,过焦点并垂直于轴的弦)公式:2b^2/a

  椭圆的斜率公式 过椭圆上x^2/a^2+y^2/b^2上一点(x,y)的切线斜率为b^2X/a^2y [编辑本段]4椭圆参数方程的应用  求解椭圆上点到定点或到定直线距离的最值时,用参数坐标可将问题转化为三角函数问题求解

  相关性质

  由于平面截圆锥(或圆柱)得到的图形有可能是椭圆,所以它属于一种圆锥截线。

  例如:有一个圆柱,被截得到一个截面,下面证明它是一个椭圆(用上面的第一定义):

  将两个半径与圆柱半径相等的半球从圆柱两端向中间挤压,它们碰到截面的时候停止,那么会得到两个公共点,显然他们是截面与球的切点。

  设两点为F1、F2

  对于截面上任意一点P,过P做圆柱的母线Q1、Q2,与球、圆柱相切的大圆分别交于Q1、Q2

  则PF1=PQ1、PF2=PQ2,所以PF1+PF2=Q1Q2

  由定义1知:截面是一个椭圆,且以F1、F2为焦点

  用同样的方法,也可以证明圆锥的斜截面(不通过底面)为一个椭圆

  椭圆有一些光学性质:椭圆的面镜(以椭圆的长轴为轴,把椭圆转动180度形成的立体图形,其外表面全部做成反射面,中空)可以将某个焦点发出的光线全部反射到另一个焦点处;椭圆的透镜(某些截面为椭圆)有汇聚光线的作用(也叫凸透镜),老花眼镜、放大镜和远视眼镜都是这种镜片(这些光学性质可以通过反证法证明)。

  -----关于圆锥截线的某些历史:圆锥截缐的发现和研究起始于古希腊。 Euclid, Archimedes, Apollonius, Pappus 等几何学大师都热衷于圆锥截缐的研究,而且都有专著论述其几何性质,其中以 Apollonius 所著的八册《圆锥截缐论》集其大成,可以说是古希腊几何学一个登峰造极的精擘之作。当时对于这种既简朴又完美的曲缐的研究,乃是纯粹从几何学的观点,研讨和圆密切相关的这种曲缐;它们的几何乃是圆的几何的自然推广,在当年这是一种纯理念的探索,并不寄望也无从预期它们会真的在大自然的基本结构中扮演著重要的角色。此事一直到十六、十七世纪之交,Kepler 行星运行三定律的发现才知道行星绕太阳运\行的轨道,乃是一种以太阳为其一焦点的椭圆。Kepler 三定律乃是近代科学开天劈地的重大突破,它不但开创了天文学的新纪元,而且也是牛顿万有引力定律的根源所在。由此可见,圆锥截缐不单单是几何学家所爱好的精简事物,它们也是大自然的基本规律中所自然选用的精要之一。

  已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为√6/3,短轴一个端点到右焦点的距离为√3(1)求椭圆C的方程(2)直线l:y=x+1与椭圆交与a,b两点,P为椭圆上一点,求△PAB面积的最大值(3)设直线l与椭圆C交与A,B两点,坐标原点O到直线l的距离为√3/2,求△AOB面积的最大值 分析短轴的端点到左右焦点的距离和为2a,端点到左右焦点的距离相等(椭圆的定义),可知a=√3,又c/a=√6/3,代入得c==√2,b=√(a²-c²),b=1,方程是x^2/3+y^2/1=1,二,要求面积,显然已ab作为三角形的底边,联立x^2/3+y^2/1=1,y=x+1解得x1=0,y1=1,x2=-15,y2=-05利用弦长公式有√(1+k^2))[x2-x1](中括号表示绝对值)弦长=3√2/2,对于p点面积最大,它到弦的距离应最大,假设已经找到p到弦的距离最大,过p做弦的平行线,可以 发现这个平行线是椭圆的切线是才会最大,这个切线和弦平行故斜率和弦的斜率=,设y=x+m,利用判别式等于0,求的m=2,-2结合图形得m=-2x=15,y=-05,p(15,-05),直线方程x-y+1=0,利用点到直线的距离公式求的3√2/2,面积1/23√2/23√2/2=9/4,三 [编辑本段]5历史  关于圆锥截线的某些历史:圆锥截线的发现和研究起始于古希腊。 Euclid, Archimedes, Apollonius, Pappus 等几何学大师都热衷于圆锥截线的研究,而且都有专著论述其几何性质,其中以 Apollonius 所著的八册《圆锥截线论》集其大成,可以说是古希腊几何学一个登峰造极的精擘之作。当时对于这种既简朴又完美的曲线的研究,乃是纯粹从几何学的观点,研讨和圆密切相关的这种曲线;它们的几何乃是圆的几何的自然推广,在当年这是一种纯理念的探索,并不寄望也无从预期它们会真的在大自然的基本结构中扮演著重要的角色。此事一直到十六、十七世纪之交,Kepler 行星运行三定律的发现才知道行星绕太阳运行的轨道,乃是一种以太阳为其一焦点的椭圆。Kepler 三定律乃是近代科学开天劈地的重大突破,它不但开创了天文学的新纪元,而且也是牛顿万有引力定律的根源所在。由此可见,圆锥截线不单单是几何学家所爱好的精简事物,它们也是大自然的基本规律中所自然选用的精要之一。

椭圆面积用定积分算为S=abπ。

解题思路:

设椭圆x^2/a^2+y^2/b^2=1

取第一象限内面积 有 y^2=b^2-b^2/a^2x^2

即 y=√(b^2-b^2/a^2x^2)

=b/a√(a^2-x^2)

由于该式反导数为所求面积,观察到原式为圆方程公式a/b,根据(af(x))'=af'(x),且x=a时圆面积为a^2π/4

可得 当x=a时,1/4S=b/a1/4a^2π=abπ/4

即S=abπ。

椭圆面积公式:S=π(圆周率)×a×b,其中a、b分别是椭圆的半长轴,半短轴的长。椭圆面积公式属于几何数学领域。

椭圆是平面内到定点F1、F2的距离之和等于常数(大于|F1F2|)的动点P的轨迹,F1、F2称为椭圆的两个焦点。其数学表达式为:|PF1|+|PF2|=2a(2a>|F1F2|)。

参考资料:

-椭圆面积公式

公式如下:

其中R是其两个参数的有理函数,P是一个无重根的3或4阶多项式,而c是一个常数。

在P有重根的时候,或者是R(x,y)没有y的奇数幂时。但是,通过适当的简化公式,每个椭圆积分可以变为只涉及有理函数和三个经典形式的积分。

扩展资料:

椭圆是封闭式圆锥截面:由锥体与平面相交的平面曲线。椭圆与其他两种形式的圆锥截面有很多相似之处:抛物线和双曲线,两者都是开放的和无界的。圆柱体的横截面为椭圆形,除非该截面平行于圆柱体的轴线。

如果中心在原点,但焦点的位置不明确在X轴或Y轴时,方程可设为mx²+ny²=1(m>0,n>0,m≠n)。即标准方程的统一形式。

椭圆的面积是πab。椭圆可以看作圆在某方向上的拉伸,它的参数方程是:x=acosθ , y=bsinθ

标准形式的椭圆在(x0,y0)点的切线就是 :xx0/a²+yy0/b²=1。椭圆切线的斜率是:-b²x0/a²y0,这个可以通过复杂的代数计算得到。

--椭圆积分

--椭圆

一、利用定积分算出来的

二、椭圆x²/a²+y²/b²=一是中心对称和轴对称,每一个象限的面积都相同,所以可以先算第一象限的面积,再乘以四

设x²/a²+y²/b²=一在第一象限内确定了一个函数y=f(x),则该区域面积可表示为

∫[0,一]f(x)dx=∫[0,一]ydx

由椭圆的参数方程,y=bsint,x=acost,(0≤t≤π/二)得dx=-asintdt

当x从0变到一时,t从π/二变到0

∴∫[0,一]ydx=∫[π/二,0]bsint(-asintdt)

=-ab∫[π/二,0]sin²tdt

=ab∫[0,π/二]sin²tdt

=ab(x/二-一/四sin二x)|[0,π/二]

=ab[(π/四-一/四sinπ)-(0-一/四sin0)]

=abπ/四

∴S椭圆=四∫[0,一]ydx=πa

如果r(π-θ)

=

r(θ)

x

=

rcos(θ),

y

=

rsin(θ),

r^2=x^2+y^2

(一般默认r>0)

tan(θ)=y/x

(x≠0)

如图:

在数学中,极坐标系是一个二维坐标系统。该坐标系统中任意位置可由一个夹角和一段相对原点—极点的距离来表示。极坐标系的应用领域十分广泛,包括数学、物理、工程、航海、航空以及机器人领域。

在两点间的关系用夹角和距离很容易表示时,极坐标系便显得尤为有用;而在平面直角坐标系中,这样的关系就只能使用三角函数来表示。对于很多类型的曲线,极坐标方程是最简单的表达形式,甚至对于某些曲线来说,只有极坐标方程能够表示。

平面内与两定点F、F'的距离的和等于常数2a(2a>|FF'|的动点P的轨迹叫做椭圆。

即:│PF│+│PF'│=2a

其中两定点F、F'叫做椭圆的焦点,两焦点的距离│FF'│叫做椭圆的焦距。

平面上到定点F距离与到定直线间距离之比为常数的点的集合(定点F不在定直线上,该常数为小于1的正数)

其中定点F为椭圆的焦点,定直线称为椭圆的准线(该定直线的方程是X=a^2/c)。

椭圆的其他定义根据椭圆的一条重要性质也就是椭圆上的点与椭圆短轴两端点连线的斜率之积是定值可以得出:平面内与两定点的连线的斜率之积是常数k的动点的轨迹是椭圆,此时k应满足一定的条件,也就是排除斜率不存在的情况

有两种,取决于焦点所在的

1)焦点在X轴时,标准方程为:x^2/a^2+y^2/b^2=1 (a>b>0)

2)焦点在Y轴时,标准方程为:x^2/b^2+y^2/a^2=1 (a>b>0)

其中a>0,b>0。a、b中较大者为椭圆长半轴长,较短者为短半轴长(椭圆有两条对称轴,对称轴被椭圆所截,有两条线段,它们的一半分别叫椭圆的长半轴和短半轴或

)当a>b时,焦点在x轴上,焦距为2(a^2-b^2)^05,焦距与长短半轴的关系:b^2=a^2-c^2 ,

是x=a^2/c和x=-a^2/c

:如果中心在原点,但焦点的位置不明确在X轴或Y轴时,方程可设为mx^2+ny^2=1(m>0,n>0,m≠n)。既标准方程的统一形式。

椭圆的面积是πab。椭圆可以看作圆在某方向上的拉伸,它的

是:x=acosθ , y=bsinθ

标准形式的椭圆在x0,y0点的切线就是 : xx0/a^2+yy0/b^2=1

椭圆的

S=π(

)×a×b(其中a,b分别是椭圆的长半轴,短半轴的长)

或S=π(

)×A×B/4(其中A,B分别是椭圆的长轴,短轴的长)

椭圆的周长公式

没有公式,有积

或无限项展开式。

(L)的精确计算要用到积分或

的求和。如

L = ∫[0,π/2]4a sqrt(1-(ecost)^2)dt≈2π√((a^2+b^2)/2) [椭圆近似周长], 其中a为椭圆长半轴,e为

的定义为椭圆上的点到某焦点的距离和该点到该焦点对应的准线的距离之比,设椭圆上点P到某焦点距离为PF,到对应准线距离为PL,则

e=PF/PL

椭圆的

x=±a^2/C

椭圆的

公式

e=c/a(e<1,因为2a>2c)

椭圆的

:椭圆的焦点与其相应准线(如焦点(c,0)与准线x=+a^2/C)的距离,数值=b^2/c

椭圆

|PF1|=a+ex0 |PF2|=a-ex0

椭圆过右焦点的半径r=a-ex

过左焦点的半径r=a+ex

椭圆的通径:过焦点的垂直于x轴(或y轴)的直线与椭圆的两交点A,B之间的距离,数值=2b^2/a

点与椭圆位置关系 点M(x0,y0) 椭圆 x^2/a^2+y^2/b^2=1

点在圆内: x0^2/a^2+y0^2/b^2<1

点在圆上: x0^2/a^2+y0^2/b^2=1

点在圆外: x0^2/a^2+y0^2/b^2>1

直线与椭圆位置关系

y=kx+m ①

x^2/a^2+y^2/b^2=1 ②

由①②可推出x^2/a^2+(kx+m)^2/b^2=1

相切△=0

相离△<0无交点

相交△>0 可利用

:A(x1,y1) B(x2,y2)

|AB|=d = √(1+k^2)|x1-x2| = √(1+k^2)(x1-x2)^2 = √(1+1/k^2)|y1-y2| = √(1+1/k^2)(y1-y2)^2

椭圆通径(定义:

(除圆外)中,过焦点并垂直于轴的弦)公式:2b^2/a

椭圆的斜率公式 过椭圆上x^2/a^2+y^2/b^2=1上一点(x,y)的切线斜率为 -(b^2)X/(a^2)y

: 数学上指一动点移动于一个平面上,与平面上两个定点F1,F2的距离之差的绝对值始终为一定值2a(2a小于F1和F2之间的距离即2a<2c)时所成的轨迹叫做

(Hyperbola)。两个定点F1,F2叫做

的左,右焦点(focus)。两焦点的距离叫焦距,长度为2c。其中2a在

上的端点叫做顶点,c^2=a^2+b^2 (a=长半轴,b=短半轴)

1文字语言定义:

平面内一个动点到一个定点与一条定直线的距离之比是一个大于1的常数。定点是双曲线的焦点,定直线是双曲线的准线,常数e是双曲线的

2集合语言定义:

设 双曲线上有一动点M,定点F,点M到定直线距离为d,

这时称集合{M| |MF|/d=e,e>1}表示的点集是双曲线

注意:定点F要在定直线外 且 比值大于1

3标准方程

设 动点M(x,y),定点F(c,0),点M到定直线l:x=a^2/c的距离为d,

则由 |MF|/d=e>1

推导出的双曲线的标准方程为

(x^2/a^2)-(y^2/b^2)=1

其中a>0,b>0,c^2=a^2+b^2

这是中心在原点,焦点在x轴上的双曲线标准方程

而中心在原点,焦点在y轴上的双曲线标准方程为:

(y^2/a^2)-(x^2/b^2)=1

1、轨迹上一点的取值范围:x≥a,x≤-a(焦点在x轴上)或者y≥a,y≤-a(焦点在y轴上)。

2、

:关于

3、顶点:A(-a,0), A’(a,0)。同时 AA’叫做双曲线的实轴且∣AA’│=2a

B(0,-b), B’(0,b)。同时 BB’叫做双曲线的虚轴且│BB’│=2b

4、

焦点在x轴:y=±(b/a)x

焦点在y轴:y=±(a/b)x

ρ=ep/1-ecosθ当e>1时,表示双曲线。其中p为焦点到准线距离,θ为弦与X轴夹角

令1-ecosθ=0可以求出θ,这个就是

。θ=arccos(1/e)

令θ=0,得出ρ=ep/1-e, x=ρcosθ=ep/1-e

令θ=PI,得出ρ=ep/1+e ,x=ρcosθ=-ep/1+e

这两个x是双曲线定点的横坐标。

求出他们的中点的横坐标(双曲线中心横坐标)

x=(ep/1-e)+(-ep/1+e)/2

(注意化简一下)

直线ρcosθ=(ep/1-e)+(-ep/1+e)/2

是双曲线一条对称轴,注意是不与曲线相交的对称轴。

将这条直线

PI/2-arccos(1/e)角度后就得到

方程,设旋转后的角度是θ’

则θ’=θ-PI/2-arccos(1/e)

则θ=θ’+PI/2-arccos(1/e)

带入上式:

ρcos{θ’+PI/2-arccos(1/e)}=(ep/1-e)+(-ep/1+e)/2

即:ρsinarccos(1/e)-θ’=(ep/1-e)+(-ep/1+e)/2

现在可以用θ取代式中的θ’了

得到方程:ρsinarccos(1/e)-θ=(ep/1-e)+(-ep/1+e)/2

5、离心率:

第一定义: e=c/a 且e∈(1,+∞)

第二定义:双曲线上的一点P到定点F的距离│PF│ 与 点P到定直线(相应准线)的距离d 的比等于双曲线的离心率e

d点(│PF│)/d线(点P到定直线(相应准线)的距离)=e

6、双曲线

上任意一点P(x,y)到焦点距离)

:r=│ex-a│

:r=│ex+a│

7、

一双曲线的实轴与虚轴长相等 即:2a=2b 且 e=√2

8、

双曲线S’的实轴是双曲线S的虚轴 且 双曲线S’的虚轴是双曲线S的实轴时,称双曲线S’与双曲线S为

几何表达:S:(x^2/a^2)-(y^2/b^2)=1 S’:(y^2/b^2)-(x^2/a^2)=1

特点:(1)共渐近线

(2)焦距相等

(3)两双曲线的离心率平方后的倒数相加等于1

9、准线: 焦点在x轴上:x=±a^2/c

焦点在y轴上:y=±a^2/c

10、通径长:(圆锥曲线(除圆外)中,过焦点并垂直于轴的弦)

d=2b^2/a

11、过焦点的

d=2pe/(1-e^2cos^2θ) 或 2p/sin^2θ [p为焦点到准线距离,θ为弦与X轴夹角]

12、

d = √(1+k^2)|x1-x2| = √(1+k^2)(x1-x2)^2 = √(1+1/k^2)|y1-y2| = √(1+1/k^2)(y1-y2)^2 推导如下:

公式:k = (y1 - y2) / (x1 - x2)

得 y1 - y2 = k(x1 - x2) 或 x1 - x2 = (y1 - y2)/k

分别代入两点间的距离公式:|AB| = √[(x1 - x2)² + (y1 - y2)² ]

稍加整理即得:

|AB| = |x1 - x2|√(1 + k²) 或 |AB| = |y1 - y2|√(1 + 1/k²)

[编辑本段]·双曲线的标准公式与

X^2/a^2 - Y^2/b^2 = 1(a>0,b>0)

的标准型是 xy = c (c ≠ 0)

但是

确实是双曲线函数经过旋转得到的

因为xy = c的对称轴是 y=x, y=-x 而X^2/a^2 - Y^2/b^2 = 1的对称轴是x轴,y轴

所以应该旋转45度

设旋转的角度为 a (a≠0,顺时针)

(a为双曲线渐进线的

)

则有

X = xcosa + ysina

Y = - xsina + ycosa

取 a = π/4

X^2 - Y^2 = (xcos(π/4) + ysin(π/4))^2 -(xsin(π/4) - ycos(π/4))^2

= (√2/2 x + √2/2 y)^2 -(√2/2 x - √2/2 y)^2

= 4 (√2/2 x) (√2/2 y)

= 2xy

而xy=c

所以

X^2/(2c) - Y^2/(2c) = 1 (c>0)

Y^2/(-2c) - X^2/(-2c) = 1 (c<0)

由此证得,

函数其实就是双曲线函数只不过是双曲线在

内的另一种摆放形式

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/12154697.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-21
下一篇 2023-05-21

发表评论

登录后才能评论

评论列表(0条)

保存