Fx(x) = ∫f(x,y)dy
求单变量的期望,可以参考以下公式:
E(x) = ∫xFx(x)dx=∫∫xf(x,y)dxdy
设(X,Y)是二维随机变量,x,y是任意实数,二元函数:F(x,y)=P({X≤x∩Y≤y})=P(X≤x,Y≤y),被称二维随机变量(X,Y)的分布函数,或称为X和Y的联合分布函数。
扩展资料:
将二维随机变量(X,Y)看成是平面上随机点的坐标,分布函数F(x,y)在(x,y)处的函数值就是随机点(X,Y)落在如图以(x,y)为顶点而位于该点左下方的无穷矩形区域内的概率。
函数与不等式和方程存在联系(初等函数)。令函数值等于零,从几何角度看,对应的自变量的值就是图像与X轴的交点的横坐标。
从代数角度看,对应的自变量是方程的解。另外,把函数的表达式(无表达式的函数除外)中的“=”换成“<”或“>”,再把“Y”换成其它代数式,函数就变成了不等式,可以求自变量的范围。
--联合分布函数
E(X) = X1p(X1) + X2p(X2) + …… + Xnp(Xn)
X1,X2,X3,……,Xn为这几个数据,p(X1),p(X2),p(X3),……p(Xn)为这几个数据的概率函数。
需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。(换句话说,期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。)
如果X是连续的随机变量,存在一个相应的概率密度函数 ,若积分 绝对收敛,那么X的期望值可以计算为: ,是针对于连续的随机变量的,与离散随机变量的期望值的算法同出一辙,由于输出值是连续的,所以把求和改成了积分。
扩展资料:
在一般情况下,两个随机变量的积的期望值不等于这两个随机变量的期望值的积。
特殊情况是当这两个随机变量是相互独立的时候 (也就是说一个随机变量的输出不会影响另一个随机变量的输出。)
例如,美国的轮盘中常用的轮盘上有38个数字,每一个数字被选中的概率都是相等的。赌注一般押在其中某一个数字上,如果轮盘的输出值和这个数字相等,那么下赌者可以将相当于赌注35倍的奖金(原注不包含在内),若输出值和下压数字不同,则赌注就输掉了。
考虑到38种所有的可能结果,然后这里我们的设定的期望目标是“赢钱”,则因此,讨论赢或输两种预想状态的话,以1美元赌注押一个数字上,则获利的期望值为:赢的“概率38分之1,能获得35元”,加上“输1元的情况37种”,结果约等于-00526美元。
也就是说,平均起来每赌1美元就会输掉5美分,即美式轮盘以1美元作赌注的期望值为 负00526美元。
都是要进行定积分的
如果其分布函数为y=f(x)
期望就是E(x)=∫xf(x)dx
D(x)=∫x[x-f(x)]²dx
如果是分散的,就直接求和∑pixi
以及∑pi(xi-E)²
E(X) = X1p(X1) + X2p(X2) + …… + Xnp(Xn) = X1f1(X1) + X2f2(X2) + …… + Xnfn(Xn)
X ;1,X ;2,X ;3,……,X。
n为这离散型随机变量,p(X1),p(X2),p(X3),……p(Xn)为这几个数据的概率函数。在随机出现的几个数据中p(X1),p(X2),p(X3),……p(Xn)概率函数就理解为数据X1,X2,X3,……,Xn出现的频率f(Xn)
扩展资料
在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。
需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。
大数定律规定,随着重复次数接近无穷大,数值的算术平均值几乎肯定地收敛于期望值。
离散型随机变量与连续型随机变量都是由随机变量取值范围(取值)确定。
参考资料:
随机变量才可以求期望,θ是随机变量,余弦波积分是关于θ的函数,随机变量的函数是随机变量写成ε(θ),E[ε(θ)]就随机变量θ的函数的数学期望。
期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。随着重复次数接近无穷大,数值的算术平均值几乎肯定地收敛于期望值。
扩展资料:
如果随机变量只取得有限个值或无穷能按一定次序一一列出,其值域为一个或若干个有限或无限区间,这样的随机变量称为离散型随机变量。
如果变量可以在某个区间内取任一实数,即变量的取值可以是连续的,这随机变量就称为连续型随机变量。
例如,公共汽车每15分钟一班,某人在站台等车时间x是个随机变量,x的取值范围是[0,15),是一个区间,从理论上说在这个区间内可取任一实数35、无理数。
代入公式。在[a,b]上的均匀分布,期望=(a+b)/2,方差=[(b-a)^2]/2。代入直接得到结论。如果不知道均匀分布的期望和方差公式,只能按步就班的做:
期望:
EX=∫{从-a积到a} xf(x) dx
=∫{从-a积到a} x/2a dx
=x^2/4a |{上a,下-a}
=0
E(X^2)=∫{从-a积到a} (x^2)f(x) dx
=∫{从-a积到a} x^2/2a dx
=x^3/6a |{上a,下-a}
=(a^2)/3
方差:
DX=E(X^2)-(EX)^2=(a^2)/3
扩展资料:
离散型随机变量与连续型随机变量都是由随机变量取值范围(取值)确定。
变量取值只能取离散型的自然数,就是离散型随机变量。例如,一次掷20个硬币,k个硬币正面朝上,k是随机变量。k的取值只能是自然数0,1,2,…,20,而不能取小数35、无理数,因而k是离散型随机变量。
如果变量可以在某个区间内取任一实数,即变量的取值可以是连续的,这随机变量就称为连续型随机变量。
例如,公共汽车每15分钟一班,某人在站台等车时间x是个随机变量,x的取值范围是[0,15),它是一个区间,从理论上说在这个区间内可取任一实数35、无理数等,因而称这随机变量是连续型随机变量。
由于随机变量X的取值 只取决于概率密度函数的积分,所以概率密度函数在个别点上的取值并不会影响随机变量的表现。
更准确来说,如果一个函数和X的概率密度函数取值不同的点只有有限个、可数无限个或者相对于整个实数轴来说测度为0(是一个零测集),那么这个函数也可以是X的概率密度函数。
连续型的随机变量取值在任意一点的概率都是0。作为推论,连续型随机变量在区间上取值的概率与这个区间是开区间还是闭区间无关。要注意的是,概率P{x=a}=0,但{X=a}并不是不可能事件
-数学期望
指数分布的参数为λ,则指数分布的期望为1/λ;方差为(1/λ)^2
E(X)==∫xf(x)dx==∫λxe^(-λx)dx=-(xe^(-λx)+1/λe^(-λx))|(正无穷到0)=1/λ
E(X^2)==∫x^2f(x)dx=∫x^2λe^(λx)dx=-(2/λ^2e^(-λx)+2xe^(-λx)+λx^2e^(-λx))|(正无穷到0)=2/λ^2
DX=E(X^2)-(EX)^2=2/λ^2-(1/λ)^2=1/λ^2
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)