在数学上的定义:给定一个非空的数集A,对A施加对应法则f,记作f(A),得到另一数集B,也就是B=f(A)那么这个关系式就叫函数关系式,简称函数
简单来讲,对于两个变量x和y,如果每给定x的一个值,y都有唯一一个确定的值与其对应,那么我们就说y是x的函数。其中,x叫做自变量,y叫做因变量。
中文名
函数
外文名
function
应用领域
金融、IT、数学、教育
应用学科
数学、计算机、金融、科学等
表示法
列表法、图像法、解析法
函数图像生成器函数图像生成器在线函数概念的发展史execl 函数函数教学视频excel 函数函数基础知识什么叫函数初中函数函数公式大全excel
函数的性质
函数有界性
设函数f(x)的定义域为D,数集X包含于D。如果存在数K1,使得f(x)≤K1对任一x∈X都成立,则称函数f(x)在X上有上界,而K1称为函数f(x)在X上的一个上界。如果存在数K2,使得f(x)≥K2对任一x∈X都成立,则称函数f(x)在X上有下界,而K2称为函数f(x)在X上的一个下界。如果存在正数M,使得|f(x)|<=M对任一x∈X都成立,则称函数f(x)在X上有界,如果这样的M不存在,就称函数f(x)在X上无界。
函数f(x)在X上有界的充分必要条件是它在X上既有上界又有下界。
函数的单调性
设函数f(x)的定义域为D,区间I包含于D。如果对于区间I上任意两点x1及x2,当x1<x2时,恒有f(x1)<f(x2),则称函数f(x)在区间I上是单调增加的;如果对于区间I上任意两点x1及x2,当x1<x2时,恒有f(x1)>f(x2),则称函数f(x)在区间I上是单调减少的。单调增加和单调减少的函数统称为单调函数。
函数的奇偶性
设f(x)为一个实变量实值函数,则f为奇函数若下列的方程对所有实数x都成立:
f(x) = f( - x) 或f( -x) = - f(x) 几何上,一个奇函数与原点对称,亦即其图在绕原点做180度旋转后不会改变。
奇函数的例子有x、sin(x)、sinh(x)和erf(x)。
设f(x)为一实变量实值函数,则f为偶函数若下列的方程对所有实数x都成立:
f(x) = f( - x) 几何上,一个偶函数会对y轴对称,亦即其图在对y轴为镜射后不会改变。
偶函数的例子有|x|、x^2、cos(x)和cosh(sec)(x)。
偶函数不可能是个双射映射。
函数的周期性
设函数f(x)的定义域为D。如果存在一个正数l,使得对于任一x∈D有(x士l)∈D,且f(x+l)=f(x)恒成立,则称f(x)为周期函数,l称为f(x)的周期,通常我们说周期函数的周期是指最小正周期。周期函数的定义域D为至少一边的无界区间,若D为有界的,则该函数不具周期性。
并非每个周期函数都有最小正周期,例如狄利克雷(Dirichlet)函数。
函数的连续性
在数学中,连续是函数的一种属性。直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)。
设f是一个从实数集的子集射到 的函数:。f在中的某个点c处是连续的当且仅当以下的两个条件满足:
f在点c上有定义。c是中的一个聚点,并且无论自变量x在中以什么方式接近c,f(x) 的极限都存在且等于f(c)。我们称函数到处连续或处处连续,或者简单的连续,如果它在其定义域中的任意点处都连续。更一般地,我们说一个函数在它定义域的子集上是连续的当它在这个子集的每一点处都连续。
不用极限的概念,也可以用下面所谓的方法来定义实值函数的连续性。
仍然考虑函数。假设c是f的定义域中的元素。函数f被称为是在c点连续当且仅当以下条件成立:
对于任意的正实数,存在一个正实数δ> 0 使得对于任意定义域中的,只要x满足c - δ< x < c + δ,就有成立。
函数的凹凸性
设函数f(x)在I上连续。如果对于I上的两点x1≠x2,恒有f((x1+x2)/2)≤(f(x1)+f(x2))/2,(f((x1+x2)/2)<(f(x1)+f(x2))/2)那么称f(x)是区间I上的(严格)凸函数;如果恒有f((x1+x2)/2)≥(f(x1)+f(x2))/2,(f((x1+x2)/2)>(f(x1)+f(x2))/2)那么称f(x)是区间上的(严格)凹函数。 一些资料中常常仅定义凹函数,凸函数则称上凹函数,凹函数则称下凹函数。
实函数和虚函数
实函数(Real function)是指定义域和值域均为实数域的函数。它的特性之一是一般可以在坐标上画出图形。
虚函数是面向对象程序设计中的一个重要的概念。当从父类中继承的时候,虚函数和被继承的函数具有相同的签名。但是在运行过程中,运行系统将根据对象的类型,自动地选择适当的具体实现运行。虚函数是面向对象编程实现多态的基本手段。
函数与反函数关于关于y=x对称。如果设(a,b)是y=f(x)的图像上任意一点,即b=f(a)。根据反函数的定义,有a=f-1(b),即点(b,a)在反函数y=f-1(x)的图像上。而点(a,b)和(b,a)关于直线y=x对称,由(a,b)的任意性可知f和f-1关于y=x对称。
性质
(1)函数f(x)与它的反函数f-1(x)图象关于直线y=x对称;函数及其反函数的图形关于直线y=x对称。
(2)函数存在反函数的充要条件是,函数的定义域与值域是一一映射。
(3)一个函数与它的反函数在相应区间上单调性一致。
(4)大部分偶函数不存在反函数(当函数y=f(x),定义域是{0}且f(x)=C(其中C是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0})。奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。
(5)一段连续的函数的单调性在对应区间内具有一致性。
(6)严增(减)的函数一定有严格增(减)的反函数。
(7)反函数是相互的且具有唯一性。
(8)定义域、值域相反对应法则互逆(三反)。
(9)反函数的导数关系:如果x=f(y)在开区间I上严格单调,可导,且f'(y)≠0,那么它的反函数y=f-1(x)在区间S={x|x=f(y),y∈I}内也可导。
(10)y=x的反函数是它本身。
嗯,我认为也不能调用,
在func这个函数里,one被优先识别为一个整形的变量,而不是一个函数,
#include <stdioh>
void one(int a,int b);
int func(int one,int c);
int main()
{
func(1,2);
return 0;
}
void one(int a,int b)
{
printf("%d %d",a,b);
}
int func(int one,int c)
{
printf("%d %d",one,c);
one(3,4);
}
在这段代码里可证实我的说法,该代码不能运行,错误信息为:"在func函数中one不能作为一个函数"
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)