具体设置过程为:菜单栏,工具——>选项——>文本编辑器——>C/C++——>格式设置。
在右边,将大纲显示里面的大纲语句块设为True,点击确定,然后重启VS。
图形折叠类问题是近年各地中考必考内容之一,已成为中考热点折叠型问题立意新颖,变换巧妙,对培养同学们的识图能力和灵活运用数学知识解决问题的能力都有非常重要的作用 解决这类问题的关键是要弄清折叠前后图形的对应关系
图1
例1 (2011贵州毕节)如图1,将半径为2 cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为
( )
A 2 cm B 3 cm C 23 cm D 25 cm
分析 通过连接半径和作弦的垂线,在图中构建直角三角形,根据勾股定理得AD的长,再根据垂径定理得AB的长
解析 作OD⊥AB于D,连接OA由折纸可得OD=12OA=1 cm,在Rt△OAD中,由勾股定理得AD=3 cm,∵ OD⊥AB,∴ AB=2AD=23 cm故选C
点评 由折叠得出OD=12OA=1是解题的关键
图2
例2 (2011福建三明)如图2,在正方形纸片ABCD中,E、F分别是AD、BC的中点,将图形沿过点B的直线折叠,使点C落在EF上,落点为N,折痕交CD边于点M,BM与EF交于点P,再展开则下列结论中:① CM=DM;② ∠ABN=30°;③ AB2=3CM2;④ △PMN是等边三角形正确的有
( )
A 1个B 2个C 3个D 4个
解析 ∵ E,F分别是AD,BC的中点,∴ EF∥AB,由此可得EF⊥BC∵ BF=12BC=12BN,∴ 在直角三角形BFN中,sin∠BNF=BFBN=12,∠BNF=30°,∠NBF=60°,∠ABN=30°,答案②正确又∠CBM=∠NBM=30°,∴ BCCM=3,即BC2=3CM2,答案③正确又CM=32BC=32DC,DM=1-32DC,∴ 答案①CM=DM不正确又∠CMB=∠NMB=60°,∠PNM=90°-30°=60°,∴ 答案④△PMN是等边三角形正确正确答案选C
点评 注意折叠前后的相等线段、相等的角,是解决本题的关键
图3
例3 (2011四川内江)如图3,在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E那么点D的坐标为
( )
A -45,125 B -25,135 C -12,135 D -35,125
分析 由折叠的性质,确定出△AEC是等腰三角形,由勾股定理求出AE的长,再求EC的长,然后根据相似或三角函数求出D点的坐标
解析 作DM⊥x轴,垂足为M,由折叠可得∠CAB=∠CAD,由AB∥OC,∠CAB=∠ACO,知∠ACO=∠CAD,∴ EA=EC设EC=AE=a,则OE=3-a,在直角三角形OAE中,由勾股定理得(3-a)2+12=a2,解得a=53,即EC=AE=53,所以,OE=3-53=43;设D(x,y),sin∠EAO=OEAE=DMAD,即4353=y3,y=125,又tan∠EAO=OEOA=DMAM,即431=125-x+1,∴ x=-45,选A
点评 有角平分线和平行线的条件可得到等腰三角形;而在直角坐标系中求点的坐标时,常用三角函数的定义或三角形相似列出比例式进行求解
例4 (2011贵州遵义)把矩形ABCD纸片按如图4方式折叠,使点A与点E重合,点C与点F重合(E、F两点均在BD上),折痕分别为BH、DG
图4
(1) 求证:△BHE≌△DGF;
(2) 若AB=6 cm,BC=8 cm,求线段FG的长
解析 (1) ∵ 四边形ABCD是矩形,∴ AB=CD,∠A=∠C=90°,∠ABD=∠BDC,由折叠,得∠1=∠2,∠A=∠HEB=90°,AB=BE,∠3=∠4,∠C=∠DFG=90°,CD=DF,∴ ∠HEB=∠DFG,BE=DF,∠2=∠4,∴ △BEH≌△DFG
(2) ∵ 四边形ABCD是矩形,AB=6 cm,BC=8 cm, 由勾股定理,得BD=10 cm,∴ BF=10-6=4 cm设FG=x,则BG=8-x,在Rt△BGF中,(8-x)2=42+x2,解得x=3,即FG=3 cm
点评 把握住折叠前后图形的形状和大小不变、位置变化,以及对应边和对应角相等,便可顺利解题
例5 (2011广东深圳)如图5,一张矩形纸片ABCD,其中AD=8 cm,AB=6 cm,先沿对角线BD对折,点C落在点C′的位置,BC′交AD于点G
(1) 求证:AG=C′G;
(2) 如图6,再折叠一次,使点D与点A重合,得折痕EN,EN交AD于点M,求EM的长
分析 (1) 由BD是∠CBC′的角平分线、矩形的性质可得AD=BC=BC′,∠1=∠2=∠3,由等腰三角形性质,得GB=GD,从而AG=C′G;(2) 在Rt△C′DG中,利用勾股定理先求出C′G的长度,再求EM的长度
解析 (1) 如图5,由图形的对称性可知,BC=BC′,∠1=∠2
∵ 四边形ABCD为矩形,∴ AD=BC,AD∥BC,∴ ∠2=∠3,从而∠1=∠3,GB=GD
又AD=BC′,∴ AG=C′G
图5
图6
图7
(2) 如图6,设AG=x,则有C′G=x,DG=8-x,DM=12AD=4 cm在Rt△C′DG中,∠DC′G=90°,C′D=CD=6 cm,∴ C′G2+C′D2=DG2,即x2+62=(8-x)2,解得x=74在Rt△DME和Rt△DC′G,tan∠EDM=EMMD=C′GC′D,即EM4=746,EM=76
二次函数图像折叠翻折对称轴动,二次函数的解析式是y=ax^2+bx+c
则折叠翻折之后二次函数的对称轴为直线x=-b/2a。
扩展资料:
二次函数(quadratic function)的基本表示形式为y=ax²+bx+c(a≠0)。二次函数最高次必须为二次, 二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。
二次函数表达式为y=ax²+bx+c(且a≠0),它的定义是一个二次多项式(或单项式)。
如果令y值等于零,则可得一个二次方程。该方程的解称为方程的根或函数的零点。
希望小编的回复能给您带来帮助!
js代码设置可折叠设置:
设置代码折叠在菜单栏的窗口-->首选项
1、选择常规-->编辑器-->structure text editors,可以看到Enable folding选项,打上勾就可以使用代码折叠功能,但还要在具体的语言中设置。
2、选择js-->编辑器-->折叠,选择启用折叠就可以让js的代码折叠了。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)