判断函数的解析性有哪些方法?

判断函数的解析性有哪些方法?,第1张

在区域上研究问题,解析和可微(可导)是等价的,两者可以互推。在某点处研究问题,只有解析才能推出可微。可微推不出可导。讨论可微性和解析性时,不管是用可微的充分性还是用必要性或充要性,只需看实部和虚部是在某点上或某线上满足C-R方程还是在某个域满足C-R方程。在域上就是解析的。

1、连续性定义:若函数f(x)在x0有定义,且极限与函数值相等,则函数在x0连续

2、充分条件:若函数f(x)在x0可导或可微(或者更强的条件),则函数在x0连续

3、必要条件:若函数f(x)在x0无定义、或无极限、或极限不等于函数值,则在x0不连续

4、观察图像(这个不严谨,只适用直观判断)

5、记住一些基本初等函数的性质,大部分初等函数在定义域内都是连续的

6、连续函数的性质:连续函数的加减乘,复合函数等都是连续的

个人认为学函数要注意几点: 

1。清楚定义域,值域,这个是正确解答函数的前提。

 2。一般题目都会给些基本知识,所以要清楚弄懂基础概念:

例如:

奇(偶)函数及其等价数学表达式(例如:奇函数等价于f(x)=-f(-x))。

二次函数,幂函数、指数函数、对数函数,这些函数的图象与性质。

函数在区间上单调增(减)证明。

周期函数证明。

3。培养数形结合的思维,进行数学符号语言与图形语言的灵活转换,记住基础函数的图像和性质,一开始可以对着课本做习题。

 弄清楚以上概念,不管题目怎么变换都是熟悉的模式,最多加上解题技巧,这些通过一定习题就可以练习出来,所以学函数抓基础定义及其等价数学表达,数形结合三大关键因素。

其实分为两种情况:

1、点的可导性和解析性,函数在一点解析必然可导,但可导不一定解析。

2、区域内可导性和解析性,可导与解析等价,即可导必解析,解析必可导。

所以解析比可导要强。

扩展资料

如果f是在x0处可导的函数,则f一定在x0处连续,特别地,任何可导函数一定在其定义域内每一点都连续。反过来并不一定。事实上,存在一个在其定义域上处处连续函数,但处处不可导。

充分必要条件

函数可导的充要条件:函数在该点连续且左导数、右导数都存在并相等。

函数可导与连续的关系

定理:若函数f(x)在x0处可导,则必在点x0处连续。

上述定理说明:函数可导则函数连续;函数连续不一定可导;不连续的函数一定不可导。

(1)如果给出的函数形式是f(z)=u(x,y)+iv(x,y),且u和v的形式比较和谐,那么直接根据柯西-黎曼方程来进行判断。

(2)如果给出的函数形式是w=f(z)表达式中只有z,没有x(即Rez)、y(即Imz)和其他自变量,而且f(z)的形式比较和谐,那么在定义域内都可以认为f(z)是解析的。例如,若f(z)是关于z的有理函数,那么除了分母为0的点之外,在其他地方都是解析的;如果含有对数,那么还要剔除对数内的部分为0的情况。

(3)如果给出的函数形式是w=f(z,z')其中z'是z的共轭,而没有其他变量,而且函数的形式比较和谐,那么这个函数在复平面上处处不解析。

(4)如果给出的函数形式是这样的:

如果要求函数f(z)在z0处是否解析,就要根据u和v的表达式,结合柯西-黎曼方程判断f(z)在z0附近不包括z0是否可导。如果可导,进一步通过定义法判断f(z)在z0点是否可导。若两次判断都满足可导条件,则f(z)在z0处解析。

函数公式有以下这些:

1、正比例函数y=kx。

2、反比例函数y=k/x。

3、一次函数y=kx+b。

4、二次函数y=ax²+bx+c。

5、三角函数y=sinx,y=cosx,y=tanx。

函数的解析式法:

用含有数学关系的等式来表示两个变量之间的函数关系的方法叫做解析式法。这种方法的优点是能简明、准确、清楚地表示出函数与自变量之间的数量关系;缺点是求对应值时往往要经过较复杂的运算,而且在实际问题中有的函数关系不一定能用表达式表示出来。

设为一个实变量实值函数,若有,则f(x)为奇函数。

几何上,一个奇函数关于原点对称,亦即其图像在绕原点做180度旋转后不会改变。

奇函数的例子有x、sin(x)、sinh(x)和erf(x)。

设f(x)为一实变量实值函数,若有,则f(x)为偶函数。

几何上,一个偶函数关于y轴对称,亦即其图在对y轴映射后不会改变。

偶函数的例子有|x|、x2、cos(x)和cosh(x)。

偶函数不可能是个双射映射。 设函数f(x)的定义域为D。如果存在一个正数T,使得对于任一有,且f(x+T)=f(x)恒成立,则称f(x)为周期函数,T称为f(x)的周期,通常我们说周期函数的周期是指最小正周期。周期函数的定义域 D 为至少一边的无界区间,若D为有界的,则该函数不具周期性。并非每个周期函数都有最小正周期,例如狄利克雷函数。

周期函数有以下性质:

(1)若T(T≠0)是f(x)的周期,则-T也是f(x)的周期。

(2)若T(T≠0)是f(x)的周期,则nT(n为任意非零整数)也是f(x)的周期。

(3)若T1与T2都是f(x)的周期,则也是f(x)的周期。

(4)若f(x)有最小正周期T,那么f(x)的任何正周期T一定是T的正整数倍。

(5)T是f(x)的最小正周期,且T1、T2分别是f(x)的两个周期,则T1/T2∈Q(Q是有理数集)

(6)若T1、T2是f(x)的两个周期,且T1/T2是无理数,则f(x)不存在最小正周期。

(7)周期函数f(x)的定义域M必定是双方无界的集合。 在数学中,连续是函数的一种属性。直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)。

设f是一个从实数集的子集射到 的函数:f在中的某个点c处是连续的当且仅当以下的两个条件满足:

f在点c上有定义。c是其中的一个聚点,并且无论自变量x在中以什么方式接近c,f(x) 的极限都存在且等于f(c)。我们称函数到处连续或处处连续,或者简单的连续,如果它在其定义域中的任意点处都连续。更一般地,我们说一个函数在它定义域的子集上是连续的当它在这个子集的每一点处都连续。

不用极限的概念,也可以用下面所谓的方法来定义实值函数的连续性。

仍然考虑函数。假设c是f的定义域中的元素。函数f被称为是在c点连续当且仅当以下条件成立:

对于任意的正实数,存在一个正实数δ> 0 使得对于任意定义域中的δ,只要x满足c - δ< x < c + δ,就有成立。 设函数在上连续。如果对于上的两点,恒有

那么称第一个不等式中的是区间上的凸函数;称第二个不等式中的为严格凸函数 。

同理如果恒有

那么称第一个不等式中的是区间上的凹函数;称第二个不等式中的为严格凹函数 。 设函数的定义域为,函数在D上有定义(D是构成符合函数的定义域,它可以是定义域的一个非空子集),且,则函数称为由函数和函数构成的复合函数,它的定义域为D,变量称为中间变量。

并不是任何两个函数都可以复合成一个复合函数,若D为空集,则和函数不能复合 。 一般地,设函数,值域是W,对于每一个属于W的y,有唯一的x属于D,使得f(x)=y,这时变量x也是变量y的函数,称为y=f(x)的反函数,记作。而习惯上y=f(x)的反函数记为。

习惯上只有一一对应的函数才有反函数。而若函数是定义在其定义域D上的单调增加或单调减少函数,则其反函数在其定义域W上单调增加或减少。原函数与反函数之间关于y=x对称 。 x取定义域内任意数时,都有 y=C (C是常数),则函数y=C称为常函数,

其图象是平行于x轴的直线或直线的一部分。 在某一个变化过程中,设有两个变量x和y,如果可以写成 (k为一次项系数,k≠0,b为常数),那么我们就说y是x的一次函数,其中x是自变量,y是因变量。特别的,当b=0时,称y是x的正比例函数。

基本性质

1.在正比例函数时,x与y的商一定(x≠0)。在反比例函数时,x与y的积一定。

在y=kx+b(k,b为常数,k≠0)中,当x增大m时,函数值y则增大km,反之,当x减少m时,函数值y则减少km。

2.当x=0时,b为一次函数图像与y轴交点的纵坐标,该点的坐标为(0,b);当y=0时,一次函数图像与x轴相交于(﹣b/k)

3.当b=0时,一次函数变为正比例函数。当然正比例函数为特殊的一次函数。

4.在两个一次函数表达式中:

当两个一次函数表达式中的k相同,b也相同时,则这两个一次函数的图像重合;

当两个一次函数表达式中的k相同,b不相同时,则这两个一次函数的图像平行;

当两个一次函数表达式中的k不相同,b不相同时,则这两个一次函数的图像相交;

当两个一次函数表达式中的k不相同,b相同时,则这两个一次函数图像交于y轴上的同一点(0,b);

当两个一次函数表达式中的k互为负倒数时,则这两个一次函数图像互相垂直。

5.两个一次函数(y1=k1x+b1,y2=k2x+b2)相乘时(k≠0),得到的的新函数为二次函数,

该函数的对称轴为-(k2b1+k1b2)/(2k1k2);

当k1,k2正负相同时,二次函数开口向上;

当k1,k2正负相反时,二次函数开口向下。

二次函数与y轴交点为(0,b2b1)。

6.两个一次函数(y1=ax+b,y2=cx+d)之比,得到的新函数y3=(ax+b)/(cx+d)为反比例函数,渐近线为x=-b/a,y=c/a。

7 当平面直角坐标系中两直线平行时,其函数解析式中k的值(即一次项系数)相等;当平面直角坐标系中两直线垂直时,其函数解析式中k的值互为负倒数(即两个k值的乘积为-1)。

图像

如右图所示,一次函数y=kx+b(k≠0)图像是直线,过(0,b)和(-b/k,0)两点。特别地,当b=0时,图像过原点。

一次函数和方程的联系与区别:

1、一次函数和一元一次方程有相似的表达形式。

2、一次函数表示的是一对(x,y)之间的关系,它有无数对解;一元一次方程表示的是未知数x的值,最多只有1个值 。

3、一次函数与x轴交点的横坐标就是相应的一元一次方程的根。

一次函数和不等式:

从函数的角度看,解不等式的方法就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围的一个过程;

从函数图像的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合。

对应一次函数y=kx+b,它与x轴交点为(-b/k,0)。

当k>0时,不等式kx+b>0的解为:x>- b/k,不等式kx+b<0的解为:x<- b/k;

当k<0的解为:不等式kx+b>0的解为:x<- b/k,不等式kx+b<0的解为:x>- b/k。 一般地,自变量x和因变量y之间存在如下关系:,则称y为x的二次函数。二次函数的定义域为实属域R。常数项c决定抛物线与y轴交点。抛物线与y轴交于(0,c)

二次函数还有以下两种表示方式:

顶点式:;

交点式(与x轴):

从右图可见二次函数图像是轴对称图形。

函数性质

1二次函数是抛物线,但抛物线不一定是二次函数。开口向上或者向下的抛物线才是二次函数。抛物线是轴对称图形。对称轴为直线x = -b/2a。对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

2抛物线有一个顶点P,坐标为 ,当 时,P在y轴上;当 时,P在x轴上。

3二次项系数a决定抛物线的开口方向和大小。当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。当a>0时,函数在处取得最小值;在上是减函数,在上是增函数;函数的值域是相反不变。

4一次项系数b和二次项系数a共同决定对称轴的位置。当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。

5令,有以下性质:

Δ>0,抛物线与x轴有2个交点,分别为:和。

Δ= 0,抛物线与x轴有1个交点,为。

Δ<0,抛物线与x轴没有交点,x的取值为虚数。 ,称a为底 ,定义域为,值域为。a>1 时是严格单调增加的,0<a<1时是严格单减的。不论a为何值,对数函数的图形均过点(1,0),对数函数与指数函数互为反函数。

以10为底的对数称为常用对数,简记为。在科学技术中普遍使用的是以e为底的对数,即自然对数,记作。 三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。

由于三角函数的周期性,它并不具有单值函数意义上的反函数。

三角函数在复数中有较为重要的应用。在物理学中,三角函数(Trigonometric)也是常用的工具。

它有六种基本函数:正弦函数,余弦函数,正切函数,余切函数,正割函数和余割函数。 双曲正弦:

双曲余弦:

双曲正切:

双曲余切: 若能由方程F(x,y)=0 确定y为x的函数y=f(x),即,就称y是x的隐函数。

而此处方程F(x,y )= 0 并非函数。 此外经常用到的函数还有高斯函数,阶梯函数和脉冲函数。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/12178554.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-21
下一篇 2023-05-21

发表评论

登录后才能评论

评论列表(0条)

保存