函数可微跟可导有什么关系

函数可微跟可导有什么关系,第1张

函数可微必定可导,函数可导不一定可微,函数可导是函数可微的必要非充分条件。

可微函数是指那些在定义域中所有点都存在导数的函数。可微函数的图像在定义域内的每一点上必存在非垂直切线。因此,可微函数的图像是相对光滑的,没有间断点、尖点或任何有垂直切线的点。

可导函数是指在微积分学中一个实变量函数,其在定义域中每一点导数存在。直观上说,函数图像在其定义域每一点处是相对平滑的,不包含任何尖点、断点。

一元函数中可导与可微等价,即为充分必要条件。

多元函数可微必可导,而反之不成立,即可导是可微的充分不必要条件。

/iknow-piccdnbceboscom/fc1f4134970a304eb18f831dddc8a786c8175ca3"target="_blank"title="大图"class="ikqb_img_alink">/iknow-piccdnbceboscom/fc1f4134970a304eb18f831dddc8a786c8175ca3x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto"esrc="https://iknow-piccdnbceboscom/fc1f4134970a304eb18f831dddc8a786c8175ca3"/>

微分在数学中的定义:由函数B=f(A),得到A、B两个数集,在A中当dx靠近自己时,函数在dx处的极限叫作函数在dx处的微分,微分的中心思想是无穷分割。微分是函数改变量的线性主要部分。微积分的基本概念之一。

导数(Derivative)是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。

可微和可导对一元单值函数来说是等价的,但是对于一般的函数来说是不等价的。一个这样的多元向量函数在一点可微,当且仅当它的所有偏导数在那一点存在并连续。这是因为导数和微分本质是两种东西,前者是函数在某个方向上的变化率,后者是映射的局部线性近似。

函数在某点处的微分是:微分 = 导数 乘以 dx,也就是,dy = f'(x) dx。

不过,我们的微积分教材上,经常出现

dy = f'(x) Δx 这种乱七八糟的写法,更会有一大段利令智昏的解释。

Δx 差值,是增值,是增量,是有限的值,是有限的小,但不是无穷小;f'(x) Δx 因此也就是有限的小,但不是无穷小。

dx 是无穷小,是无穷小的差值,是无穷小的增值。

只有当 Δx 趋向于 0 时,写成 dx,导数的定义就是如此!

由函数B=f(A),得到A、B两个数集,在A中当dx靠近自己时,函数在dx处的极限叫作函数在dx处的微分,微分的中心思想是无穷分割。

扩展资料:

把自变量x的增量 Δx称为自变量的微分,记作dx,即dx = Δx。于是函数y = f(x)的微分又可记作dy = f'(x)dx。函数因变量的微分与自变量的微分之商等于该函数的导数。

设Δx是曲线y = f(x)上的点M的在横坐标上的增量,Δy是曲线在点M对应Δx在纵坐标上的增量,dy是曲 线在点M的切线对应Δx在纵坐标上的增量。当|Δx|很小时,|Δy-dy|比|Δx|要小得多(高阶无穷小),因此在点M附近,我们可以用切线段来近似代替曲线段。

如果函数f在一点x_0的雅克比矩阵的每一个元素\frac{\partial f_i}{\partial x_j}(x_0)都在x_0连续,那么函数在这点处可微,但反之不真。

——微分

二阶可微定义公式:Δy/Δx=lim(Δx->0)(f(0+Δx)-f(0))/Δx=A。

二元函数可微的定义是函数z=f(x,y)在点(x,y)的全增量Δz=f(x+Δx,y+Δy)-f(x,y)可以表示成Δz=AΔx+BΔy+o(ρ)。令x=y=0,则全增量Δz=f(Δx,Δy)-f(0,0),将符号Δx,Δy换成x,y来表示。

则该题中(x,y)→(0,0)时函数f(x,y)的Δz=f(x,y)-f(0,0)=-2x+y+o(ρ),符合定义的要求,所以f(x,y)在点(0,0)处可微。

必须注意

所谓二重极限存在,是指P(x,y)以任何方式趋于P0(x0,y0)时,f(x,y)都无限接近于A。因此,如果P(x,y)以某一特殊方式,例如沿着一条定直线或定曲线趋于P0(x0,y0)时,即使f(x,y)无限接近于某一确定值,我们还不能由此断定函数的极限存在。

但是反过来,如果当P(x,y)以不同方式趋于P0(x0,y0)时,f(x,y)趋于不同的值,那么就可以断定这函数的极限不存在。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/12180988.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-21
下一篇 2023-05-21

发表评论

登录后才能评论

评论列表(0条)

保存