就是公式的反复熟练运用
倒数关系:
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1
商的关系:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方关系:
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
平常针对不同条件的常用的两个公式
sin^2(α)+cos^2(α)=1
tan α cot α=1
一个特殊公式
(sina+sinθ)(sina-sinθ)=sin(a+θ)sin(a-θ)
证明:(sina+sinθ)(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] 2 cos[(θ+a)/2] sin[(a-θ)/2]
=sin(a+θ)sin(a-θ)
坡度公式
我们通常半坡面的铅直高度h与水平高度l的比叫做坡度(也叫坡比), 用字母i表示,
即 i=h / l, 坡度的一般形式写成 l : m 形式,如i=1:5如果把坡面与水平面的夹角记作
a(叫做坡角),那么 i=h/l=tan a
锐角三角函数公式
正弦: sin α=∠α的对边/∠α 的斜边
余弦:cos α=∠α的邻边/∠α的斜边
正切:tan α=∠α的对边/∠α的邻边
余切:cot α=∠α的邻边/∠α的对边
二倍角公式
正弦
sin2A=2sinA·cosA
余弦
1Cos2a=Cos^2(a)-Sin^2(a)
2Cos2a=1-2Sin^2(a)
3Cos2a=2Cos^2(a)-1
即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a)
正切
tan2A=(2tanA)/(1-tan^2(A))
三倍角公式
sin3α=4sinα·sin(π/3+α)sin(π/3-α)
cos3α=4cosα·cos(π/3+α)cos(π/3-α)
tan3a = tan a · tan(π/3+a)· tan(π/3-a)
三倍角公式
sin3α=3sinα-4sin^3(α)=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cos^3(α)-3cosα=4cosα·cos(π/3+α)cos(π/3-α) tan3α=tan(α)(-3+tan(α)^2)/(-1+3tan(α)^2)=tan a · tan(π/3+a)· tan(π/3-a)
半角公式
sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα
万能公式
sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)]
其他
sinα+sin(α+2π/n)+sin(α+2π2/n)+sin(α+2π3/n)+……+sin[α+2π(n-1)/n]=0 cosα+cos(α+2π/n)+cos(α+2π2/n)+cos(α+2π3/n)+……+cos[α+2π(n-1)/n]=0 以及 sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
四倍角公式
sin4A=-4(cosAsinA(2sinA^2-1)) cos4A=1+(-8cosA^2+8cosA^4) tan4A=(4tanA-4tanA^3)/(1-6tanA^2+tanA^4)
五倍角公式
sin5A=16sinA^5-20sinA^3+5sinA cos5A=16cosA^5-20cosA^3+5cosA tan5A=tanA(5-10tanA^2+tanA^4)/(1-10tanA^2+5tanA^4)
六倍角公式
sin6A=2(cosAsinA(2sinA+1)(2sinA-1)(-3+4sinA^2)) cos6A=((-1+2cosA^2)(16cosA^4-16cosA^2+1)) tan6A=(-6tanA+20tanA^3-6tanA^5)/(-1+15tanA^2-15tanA^4+tanA^6)
七倍角公式
sin7A=-(sinA(56sinA^2-112sinA^4-7+64sinA^6)) cos7A=(cosA(56cosA^2-112cosA^4+64cosA^6-7)) tan7A=tanA(-7+35tanA^2-21tanA^4+tanA^6)/(-1+21tanA^2-35tanA^4+7tanA^6)
八倍角公式
sin8A=-8(cosAsinA(2sinA^2-1)(-8sinA^2+8sinA^4+1)) cos8A=1+(160cosA^4-256cosA^6+128cosA^8-32cosA^2) tan8A=-8tanA(-1+7tanA^2-7tanA^4+tanA^6)/(1-28tanA^2+70tanA^4-28tanA^6+tanA^8)
九倍角公式
sin9A=(sinA(-3+4sinA^2)(64sinA^6-96sinA^4+36sinA^2-3)) cos9A=(cosA(-3+4cosA^2)(64cosA^6-96cosA^4+36cosA^2-3)) tan9A=tanA(9-84tanA^2+126tanA^4-36tanA^6+tanA^8)/(1-36tanA^2+126tanA^4-84tanA^6+9tanA^8)
十倍角公式
sin10A=2(cosAsinA(4sinA^2+2sinA-1)(4sinA^2-2sinA-1)(-20sinA^2+5+16sinA^4)) cos10A=((-1+2cosA^2)(256cosA^8-512cosA^6+304cosA^4-48cosA^2+1)) tan10A=-2tanA(5-60tanA^2+126tanA^4-60tanA^6+5tanA^8)/(-1+45tanA^2-210tanA^4+210tanA^6-45tanA^8+tanA^10)
N倍角公式
根据棣美弗定理,(cosθ+ i sinθ)^n = cos(nθ)+ i sin(nθ) 为方便描述,令sinθ=s,cosθ=c 考虑n为正整数的情形: cos(nθ)+ i sin(nθ) = (c+ i s)^n = C(n,0)c^n + C(n,2)c^(n-2)(i s)^2 + C(n,4)c^(n-4)(i s)^4 + +C(n,1)c^(n-1)(i s)^1 + C(n,3)c^(n-3)(i s)^3 + C(n,5)c^(n-5)(i s)^5 + =>比较两边的实部与虚部 实部:cos(nθ)=C(n,0)c^n + C(n,2)c^(n-2)(i s)^2 + C(n,4)c^(n-4)(i s)^4 + i(虚部):isin(nθ)=C(n,1)c^(n-1)(i s)^1 + C(n,3)c^(n-3)(i s)^3 + C(n,5)c^(n-5)(i s)^5 + 对所有的自然数n, 1 cos(nθ): 公式中出现的s都是偶次方,而s^2=1-c^2(平方关系),因此全部都可以改成以c(也就是cosθ)表示。 2 sin(nθ): (1)当n是奇数时: 公式中出现的c都是偶次方,而c^2=1-s^2(平方关系),因此全部都可以改成以s(也就是sinθ)表示。 (2)当n是偶数时: 公式中出现的c都是奇次方,而c^2=1-s^2(平方关系),因此即使再怎么换成s,都至少会剩c(也就是 cosθ)的一次方无法消掉。 (例 c^3=cc^2=c(1-s^2),c^5=c(c^2)^2=c(1-s^2)^2)
半角公式
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);
cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA
sin^2(a/2)=(1-cos(a))/2
cos^2(a/2)=(1+cos(a))/2
tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))
和差化积
sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]
sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]
cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]
cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]
tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)
两角和公式
tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)
tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ -cosαsinβ
积化和差
sinαsinβ =-[cos(α+β)-cos(α-β)] /2
cosαcosβ = [cos(α+β)+cos(α-β)]/2
sinαcosβ = [sin(α+β)+sin(α-β)]/2
cosαsinβ = [sin(α+β)-sin(α-β)]/2
双曲函数
sh a = [e^a-e^(-a)]/2
ch a = [e^a+e^(-a)]/2
th a = sin h(a)/cos h(a)
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)= sinα
cos(2kπ+α)= cosα
tan(2kπ+α)= tanα
cot(2kπ+α)= cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)= -sinα
cos(π+α)= -cosα
tan(π+α)= tanα
cot(π+α)= cotα
公式三:
任意角α与 -α的三角函数值之间的关系:
sin(-α)= -sinα
cos(-α)= cosα
tan(-α)= -tanα
cot(-α)= -cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)= sinα
cos(π-α)= -cosα
tan(π-α)= -tanα
cot(π-α)= -cotα
公式五:
利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)= -sinα
cos(2π-α)= cosα
tan(2π-α)= -tanα
cot(2π-α)= -cotα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)= cosα
cos(π/2+α)= -sinα
tan(π/2+α)= -cotα
cot(π/2+α)= -tanα
sin(π/2-α)= cosα
cos(π/2-α)= sinα
tan(π/2-α)= cotα
cot(π/2-α)= tanα
sin(3π/2+α)= -cosα
cos(3π/2+α)= sinα
tan(3π/2+α)= -cotα
cot(3π/2+α)= -tanα
sin(3π/2-α)= -cosα
cos(3π/2-α)= -sinα
tan(3π/2-α)= cotα
cot(3π/2-α)= tanα
(以上k∈Z)
A·sin(ωt+θ)+ B·sin(ωt+φ) =
√{(A² +B² +2ABcos(θ-φ)} · sin{ ωt + arcsin[ (A·sinθ+B·sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} }
√表示根号,包括{……}中的内容
诱导公式(六公式)
公式一 sin(-α) = -sinα
cos(-α) = cosα
tan (-α)=-tanα
公式二 sin(π/2-α) = cosα
cos(π/2-α) = sinα
公式三 sin(π/2+α) = cosα
cos(π/2+α) = -sinα
公式四 sin(π-α) = sinα
cos(π-α) = -cosα
公式五 sin(π+α) = -sinα
cos(π+α) = -cosα
公式六 tanA= sinA/cosA
tan(π/2+α)=-cotα
tan(π/2-α)=cotα
tan(π-α)=-tanα
tan(π+α)=tanα
诱导公式记背诀窍:奇变偶不变,符号看象限
万能公式
sinα=2tan(α/2)/[1+(tan(α/2))²]
cosα=[1-(tan(α/2))²]/[1+(tan(α/2))²]
tanα=2tan(α/2)/[1-(tan(α/2))²]
其它公式
(1) (sinα)^2+(cosα)^2=1(平方和公式)
(2)1+(tanα)^2=(secα)^2
(3)1+(cotα)^2=(cscα)^2
(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC
两角和公式
sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB
cos(A+B) = cosAcosB-sinAsinB
cos(A-B) = cosAcosB+sinAsinB
tan(A+B) = (tanA+tanB)/(1-tanAtanB)
tan(A-B) = (tanA-tanB)/(1+tanAtanB)
cot(A+B) = (cotAcotB-1)/(cotB+cotA)
cot(A-B) = (cotAcotB+1)/(cotB-cotA)
完整初中三角函数值表如下图所示:
常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。
扩展资料:
起源
公元五世纪到十二世纪,印度数学家对三角学作出了较大的贡献。尽管当时三角学仍然还是天文学的一个计算工具,是一个附属品,但是三角学的内容却由于印度数学家的努力而大大的丰富了。
三角学中”正弦”和”余弦”的概念就是由印度数学家首先引进的,他们还造出了比托勒密更精确的正弦表。
我们已知道,托勒密和希帕克造出的弦表是圆的全弦表,它是把圆弧同弧所夹的弦对应起来的。印度数学家不同,他们把半弦(AC)与全弦所对弧的一半(AD)相对应,即将AC与∠AOC对应,这样,他们造出的就不再是”全弦表”,而是”正弦表”了。
印度人称连结弧(AB)的两端的弦(AB)为”吉瓦(jiba)”,是弓弦的意思;称AB的一半(AC) 为”阿尔哈吉瓦”。后来”吉瓦”这个词译成阿拉伯文时被误解为”弯曲”、”凹处”,阿拉伯语是 ”dschaib”。十二世纪,阿拉伯文被转译成拉丁文,这个字被意译成了”sinus”。
这篇文章给大家分享一下常用的三角函数值表以及三角函数的计算公式,一起看一下具体的知识点内容。
常用的三角函数值表
三角函数两角和差计算公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-cossinB
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
三角函数积化和差计算公式sinAsinB=-[cos(A+B)-cos(A-B)]/2
cosAcosB=[cos(A+B)+cos(A-B)]/2
sinAcosB=[sin(A+B)+sin(A-B)]/2
cosAsinB=[sin(A+B)-sin(A-B)]/2
三角函数和差化积计算公式sinA+sinB=2sin[(A+B)/2]cos[(A-B)/2]
sinA-sinB=2cos[(A+B)/2]sin[(A-B)/2]
cosA+cosB=2cos[(A+B)/2]cos[(A-B)/2]
cosA-cosB=-2sin[(A+B)/2]sin[(A-B)/2]
tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)
sin@=对边 / 斜边
cos@=邻边 / 斜边
tan@=对边 / 邻边
cot@=邻边 / 对边
一、sin度数公式
1、sin 30= 1/2
2、sin 45=根号2/2
3、sin 60= 根号3/2
二、cos度数公式
1、cos 30=根号3/2
2、cos 45=根号2/2
3、cos 60=1/2
三、tan度数公式
1、tan 30=根号3/3
2、tan 45=1
3、tan 60=根号3
扩展资料:
sin0=sin0°=0
cos0=cos0°=1
tan0=tan0°=0sin15=0650;
sin15°=0259
cos15=-0759;cos15°=0966
tan15=-0855;tan15°=0268
sin30°=1/2
cos30°=0866;
-三角函数值
三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。
常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。
三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。三角函数(也叫做圆函数)是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。更现代的定义把它们表达为无穷级数或特定微分方程的解,允许它们扩展到任意正数和负数值,甚至是复数值。
中文名
三角函数
外文名
trigonometric function
提出者
印度数学家
提出时间
公元五世纪
适用领域
函数及图像
相关课程
三角函数数学题型全归纳
去学习
快速
导航
定义
三角学
特殊角
几何性质
诱导公式
关于三角恒等式
概念
推广
复数性质
相关定理
函数介绍
记忆口诀
发展历史
起源
公元五世纪到十二世纪,印度数学家对三角学作出了较大的贡献。尽管当时三角学仍然还是天文学的一个计算工具,是一个附属品,但是三角学的内容却由于印度数学家的努力而大大的丰富了。
三角学中”正弦”和”余弦”的概念就是由印度数学家首先引进的,他们还造出了比托勒密更精确的正弦表。
我们已知道,托勒密和希帕克造出的弦表是圆的全弦表,它是把圆弧同弧所夹的弦对应起来的。印度数学家不同,他们把半弦(AC)与全弦所对弧的一半(AD)相对应,即将AC与∠AOC对应,这样,他们造出的就不再是”全弦表”,而是”正弦表”了。
印度人称连结弧(AB)的两端的弦(AB)为”吉瓦(jiba)”,是弓弦的意思;称AB的一半(AC) 为”阿尔哈吉瓦”。后来”吉瓦”这个词译成阿拉伯文时被误解为”弯曲”、”凹处”,阿拉伯语是 ”dschaib”。十二世纪,阿拉伯文被转译成拉丁文,这个字被意译成了”sinus”。[1]
古希腊历史
早期对于三角函数的研究可以追溯到古代。古希腊三角术的奠基人是公元前2世纪的喜帕恰斯。他按照古巴比伦人的做法,将圆周分为360等份(即圆周的弧度为360度,与现代的弧度制不同)。对于给定的弧度,他给出了对应的弦的长度数值,这个记法和现代的正弦函数是等价的。喜帕恰斯实际上给出了最早的三角函数数值表。然而古希腊的三角学基本是球面三角学。这与古希腊人研究的主体是天文学有关。梅涅劳斯在他的著作《球面学》中使用了正弦来描述球面的梅涅劳斯定理。古希腊三角学与其天文学的应用在埃及的托勒密时代达到了高峰,托勒密在《数学汇编》(Syntaxis Mathematica)中计算了36度角和72度角的正弦值,还给出了计算和角公式和半角公式的方法。
A+B>90,
B>90-A,A>90-B,
cosB-sinA=sin(90-B)-sinA<0,
sinB-cosA=sinB-sin(90-A)>0,
所以在第二象限
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)