自相关函数应用非常广泛,在不同的应用领域中它具有不同的物理意义
例如,在电学、信号处理方面,一个随机过程(信号)的自相关函数与该随机过程(信号)的功率谱或能量谱成傅立叶变换对的关系
1 R(t1,t2) = R(t1-t2) = R(tao)
2 R(t1,t2) 是正定的。
3 如果此平稳随机过程是实函数,则R(tao)的傅里叶变换是omiga的实偶函数,并且恒为正。
在概率论概念中,随机过程是随机变量的集合。若一随机系统的样本点是随机函数,则称此函数为样本函数,这一随机系统全部样本函数的集合是一个随机过程。实际应用中,样本函数的一般定义在时间域或者空间域。随机过程的实例如股票和汇率的波动、语音信号、视频信号、体温的变化,反对法随机运动如布朗运动、随机徘徊等等。
设为一概率空间,另设集合T为一指标集合。如果对于所有,均有一随机变量定义于概率空间,则集合为一随机过程。
通常,指标集合T代表时间,以实数或整数表示。以实数形式表示时,随机过程称为连续随机过程;以整数表示时,则为离散随机过程。随机过程中的参数只为分辨同类随机过程中的不同实例,如上文下理不构成误会,通常略去。例如表达单次元布朗运动时,常以表达,但若考虑两同时进行布朗运动的粒子,则会分别以和(或作和)表示。
历史
为了了解金融市场和研究布朗运动,在19世纪后期人们开始研究随机过程。第一个用数学语言描述布朗运动的是数学家Thorvald N Thiele。 他在1880年发表了第一篇关于布朗运动的文章。随后,在1900年, Louis Bachelier的博士论文“投机理论” 提出了股票和期权市场的随机分析。阿尔伯特·爱因斯坦(在他1905年的一篇论文中)和玛丽安·一维Smoluchowski(1906年)从物理界的角度出发,把它作为了一种间接证明了原子和分子的存在。他们所描述的布朗运动方程在1908年被让·佩兰核实。
从爱因斯坦的文章的摘录描述了随机模型的基本原理:
"它必须明确假定每个单个颗粒执行的运动是独立于所有其他的粒子的运动;它也将被认为是1的动作和相同的颗粒在不同的时间间隔是独立的过程,只要这些的时间间隔不是非常小"
"我们引入一时间间隔蛋白考虑,相对来说这是非常小的,但是我们可观察到的时间间隔,仍然过大,在两个连续时间间隔蛋白,由粒子所执行的动作可以被认为是作为彼此独立的事件"。
从定义出发来认识这个问题,
随机过程X(t)的自相关函数定义为R(s,t)=E(Xs,Xt),t≥0,若定义X(t)的二阶中心矩为
σ²=VAR[X(t)]=E{X(t)-E[X(t)]²},则两个变量s,t的协方差函数为
Cov(Xs,Xt)=E{[Xs-E(Xs)][Xt-E(Xt)]}
一、物理上:
1、相关函数在时间域上描述随机过程的统计特征,功率谱是在频率域上描述随机过程的统计特征。
2、二者所提供的信息完全一致,功率谱易于获得应用十分普遍。
二、数学上:
功率谱等于相关函数的傅里叶变换,相关函数等于功率谱的傅立叶逆变换。
1、功率谱密度谱是一种概率统计方法,是对随机变量均方值的量度。一般用于随机振动分析,连续瞬态响应只能通过概率分布函数进行描述,即出现某水平响应所对应的概率。
2、功率谱密度的定义是单位频带内的“功率”(均方值)。
3、功率谱密度是结构在随机动态载荷激励下响应的统计结果,是一条功率谱密度值—频率值的关系曲线,其中功率谱密度可以是位移功率谱密度、速度功率谱密度、加速度功率谱密度、力功率谱密度等形式。
4、自相关(英语:Autocorrelation),也叫序列相关,是一个信号于其自身在不同时间点的互相关。非正式地来说,它就是两次观察之间的相似度对它们之间的时间差的函数。它是找出重复模式(如被噪声掩盖的周期信号),或识别隐含在信号谐波频率中消失的基频的数学工具。它常用于信号处理中,用来分析函数或一系列值,如时域信号。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)