1、包含关系不同
极值可能是最值,但是最值不一定是极值。另外,开区间的极值点一定是最值点。例如:
例如:y = x³ - x (-5 ≤ x ≤ 5)。 极大值在 x=-1 跟 x=0 之间,极小值在 x=0 跟 x=1 之间。 而最小值在 x=-5 处,Y最小= -120;最大值在 x=5 处,Y最大=120 。
2、属性不同
极大值点,极小值点都各指的是一个点;极值是包括极大值与极小值的一组数据。
3、所表示的意思不同
极大值点与极小值点说的是横坐标的数值;而极值指的是纵坐标的数值。
-极值点
-极值
极值点的一阶导等于0
f'x=6x^2+2ax+b
f'(1)=f'(2)=0得到a=-9b=18
判断极大值和极小值需要根据二阶导(当然你也可以直接代入)
f''=12x+2a=12x-18
f''(1)<0所以x=1是极大值点,
同理x=2是极小值点,
代入求f(1)=14,f(2)=13
所以极大值是14,极小值是13
不懂请追问,满意请点个采纳。
在一个函数图里,要想判断该值是极大值还是极小值,就需要判断该处两侧的导数符号情况。若该处左侧导数值为负数,右侧导数值为正数,那么该处的值为极小值。若该处左侧导数值为正数,右侧导数值为负数,那么该处的值为极大值。如我所画的图中举例
x=a、c、e为极大值,b。d为极小值。另由于e点的函数值最大,也是最大值;d点函数值最小也是最小值。
总的来说,对于原函数,先减后增产生极小值,先增后减产生极大值;
极小值
一个函数能够取到极值的充要条件是: ①存在使导数等于0的点, 即在该点处 f' = 0。②使导数等于0的那个x值,左右两边导数符号相反。若 f'左 > 0,f'右 < 0,则为极大值。若 f'左 < 0,f'右 > 0,则为极小值。
在数学分析中,函数的最大值和最小值(最大值和最小值)被统称为极值(极数),是给定范围内的函数的最大值和最小值(本地 或相对极值)或函数的整个定义域(全局或绝对极值)。皮埃尔·费马特(Pierre de Fermat)是第一位发现函数的最大值和最小值数学家之一。
如集合理论中定义的,集合的最大值和最小值分别是集合中最大和最小的元素。 无限无限集,如实数集合,没有最小值或最大值。
极值是一个函数的极大值或极小值。如果一个函数在一点的一个邻域内处处都有确定的值,而以该点处的值为最大(小),这函数在该点处的值就是一个极大(小)值。如果它比邻域内其他各点处的函数值都大(小),它就是一个严格极大(小)。该点就相应地称为一个极值点或严格极值点。
1、代表意义不同
最值,是函数的定义域内的最高点和最低点。函数最值分为函数最小值与函数最大值。简单来说,最小值即定义域中函数值的最小值,最大值即定义域中函数值的最大值。函数最大(小)值的几何意义:函数图像的最高(低)点的纵坐标即为该函数的最大(小)值。
函数极值是一定范围内(给定区间)内取得的最大值或最小值,分别称为极大值或极小值,极值也称为相对极值或局部极值。
2、包含关系不同
极值可能是最值,但是最值不一定是极值。另外,开区间的极值点一定是最值点。例如:
例如:y = x³ - x (-5 ≤ x ≤ 5)。 极大值在 x=-1 跟 x=0 之间,极小值在 x=0 跟 x=1 之间。 而最小值在 x=-5 处,Y最小= -120;最大值在 x=5 处,Y最大=120 。
扩展资料
求解函数的极值
1、如果函数在闭合区间上是连续的,则通过极值定理存在整个定义域上的最大值和最小值。
2、费马定理可以发现局部极值的微分函数,它表明它们必须发生在关键点。可以通过使用一阶导数测试,二阶导数测试或高阶导数测试来区分临界点是局部最大值还是局部最小值,给出足够的可区分性。
3、对于分段定义的任何功能,通过分别找出每个零件的最大值(或最小值),然后查看哪一个是最大(或最小),找到最大值(或最小值)。
-极值
-最值
具体回答如下:
y'=[ln(x+√(1+x²))]'
=1/(x+√(1+x²)) [x+√(1+x²)]'
=1/(x+√(1+x²)) [1+2x/2√(1+x²)]
=1/(x+√(1+x²)) [1+x/√(1+x²)]
=1/(x+√(1+x²)) [1√(1+x²)+x]/√(1+x²)
=1/√(1+x²)
导函数
如果函数的导函数在某一区间内恒大于零(或恒小于零),那么函数在这一区间内单调递增(或单调递减),这种区间也称为函数的单调区间,导函数等于零的点称为函数的驻点,在这类点上函数可能会取得极大值或极小值(即极值可疑点)。
进一步判断则需要知道导函数在附近的符号,对于满足的一点,如果存在使得在之前区间上都大于等于零,而在之后区间上都小于等于零,那么是一个极大值点,反之则为极小值点。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)