三角函数与对应的反三角函数是互为反函数的
1三角函数是求出各角的各种值,反三角函数是根据各种值求角
2由反函数的定义,三角函数与对应的反三角函数的定义域与值域是相反的
反三角函数不是三角函数的反函数,
是在特定范围[-π,π]内,
反三角函数与三角函数(在[-π,π])互为反函数
S1: 重新构建一个三角方程,使新的方程的中间变量的主值区间符合条件;
S2: 解出中间变量
S3: 替换字母
如:
求y=sinx (3π/2 , 5π/2)的反函数;
解:
3π/2<x<5π/2
两边各减去(2π)得:
-π/2<x-2π<π/2
sin(x-2π)=y
x-2π=arcsiny
x=2π+arcsiny
所以,原函数的反函数为:
y=2π+arcsinx
因为sinx在x∈[-π/2,π/2]上是单调函数,每一个x都有一个对应的arcsina,
当x的定义域在-π,π上,sinx=a,每个a至少有2个x与之对应,不能一一对应,就不能直接用反三角函数求x了,所以要将定义域限制在x∈[-π/2,π/2]
综述:求y=2sin3x的反函数
解:直接函数y=2sin3x的定义域应限制为:-π/2≦3x≦π/2,即-π/6≦x≦π/6才会有反函数。
此时直接函数的值域为:-2≦y≦2;当-π/6≦x≦π/6时由sin3x=y/2;得3x=arcsin(y/2);即 x=(1/3)arcsin(y/2);交换x,y,即得反函数:y=(1/3)arcsin(x/2);定义域:由-1≦x/2≦1,得定义域为:-2≦x≦2;值域为:-π/6≦y≦π/6。
三角函数是数学中属于初等函数中的超越函数的函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。
特别提醒:
三角函数化简与求值时需要的知识储备:①熟记特殊角的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要求是项数要最少,次数要最低,函数名最少,分母能最简,易求值最好。
-三角函数公式
郭敦顒回答:
什么是反三角函数?
想来你已认识了三角函数,一个角α的三角函数有α角的正弦sinα,α角的余弦cosα,α角的正切tanα,α角的余切cotα,α角的正割secα,α角的余割cscα,共六个,
如在rt⊿abc中,∠c=90°,角的对边分别为a,b,c,c为斜边,
则∠a的三角函数是:
sin
a=
a/c,cosa=
b/c,tana=
a/b,cota=
b/a,seca=
c/b,csca=
c/a。
当∠a=30°时,则sin
a
=
sin30°=05,cos30°=(1/2)√3,,
又当已知c=2,则由sin
a=
a/c得,a=sin
a
=2•sin30°=1。
以上是已知角度值,得三角函数值,及利用三角函数值求边长。
但若不知角度值,却已知三角函数值,或已知边长计算得到三角函数值,如a=1,c=2,则sin
a=
a/c=1/2=05,∴∠a=30°,
这个过程写为arc
sinx,当x=05时,arcsin05=30°,
arc
sinx是x的反正弦函数,sinx表正弦函数值,arc是反三角函数符号,通常
x是已知的。
当已知三角函数值求对应的角度时,则用反三角函数。
arc
cosx为x的反余弦函数,其它反三角函数略。
余切函数 cotθ=x/y
割函数 secθ=r/x
余割函数 cscθ=r/y
(斜边r边y邻边x)
及两用已趋于淘汰函数:
矢函数 versinθ =1-cosθ
余矢函数 coversθ =1-sinθ
弦(sin):角α边比斜边
余弦(cos):角α邻边比斜边
切(tan):角α边比邻边
余切(cot):角α邻边比边
割(sec):角α斜边比邻边
余割(csc):角α斜边比边
[编辑本段]同角三角函数间基本关系式:
·平关系:
sin^2α+cos^2α=1
1+tan^2α=sec^2α
1+cot^2α=csc^2α
·积关系:
sinα=tanα×cosα
cosα=cotα×sinα
tanα=sinα×secα
cotα=cosα×cscα
secα=tanα×cscα
cscα=secα×cotα
·倒数关系:
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1
商关系:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
直角三角形ABC,
角A弦值等于角A边比斜边,
余弦等于角A邻边比斜边
切等于边比邻边,
·[1]三角函数恒等变形公式
·两角与差三角函数:
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
·三角三角函数:
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
·辅助角公式:
Asinα+Bcosα=(A2+B2)^(1/2)sin(α+arctan(B/A))其
sint=B/(A2+B2)^(1/2)
cost=A/(A2+B2)^(1/2)
tant=B/A
Asinα-Bcosα=(A2+B2)^(1/2)cos(α-t)tant=A/B
·倍角公式:
sin(2α)=2sinα·cosα=2/(tanα+cotα)
cos(2α)=cos2(α)-sin2(α)=2cos2(α)-1=1-2sin2(α)
tan(2α)=2tanα/[1-tan2(α)]
·三倍角公式:
sin(3α)=3sinα-4sin3(α)=4sinα·sin(60+α)sin(60-α)
cos(3α)=4cos3(α)-3cosα=4cosα·cos(60+α)cos(60-α)
tan(3α)=tan a · tan(π/3+a)· tan(π/3-a)
·半角公式:
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
·降幂公式
sin2(α)=(1-cos(2α))/2=versin(2α)/2
cos2(α)=(1+cos(2α))/2=covers(2α)/2
tan2(α)=(1-cos(2α))/(1+cos(2α))
·万能公式:
sinα=2tan(α/2)/[1+tan2(α/2)]
cosα=[1-tan2(α/2)]/[1+tan2(α/2)]
tanα=2tan(α/2)/[1-tan2(α/2)]
·积化差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
·差化积公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
·推导公式
tanα+cotα=2/sin2α
tanα-cotα=-2cot2α
1+cos2α=2cos2α
1-cos2α=2sin2α
1+sinα=(sinα/2+cosα/2)2
·其:
sinα+sin(α+2π/n)+sin(α+2π2/n)+sin(α+2π3/n)+……+sin[α+2π(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π2/n)+cos(α+2π3/n)+……+cos[α+2π(n-1)/n]=0 及
sin2(α)+sin2(α-2π/3)+sin2(α+2π/3)=3/2
tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
cosx+cos2x++cosnx= [sin(n+1)x+sinnx-sinx]/2sinx
证明:
左边=2sinx(cosx+cos2x++cosnx)/2sinx
=[sin2x-0+sin3x-sinx+sin4x-sin2x++ sinnx-sin(n-2)x+sin(n+1)x-sin(n-1)x]/2sinx (积化差)
=[sin(n+1)x+sinnx-sinx]/2sinx=右边
等式证
sinx+sin2x++sinnx= - [cos(n+1)x+cosnx-cosx-1]/2sinx
证明:
左边=-2sinx[sinx+sin2x++sinnx]/(-2sinx)
=[cos2x-cos0+cos3x-cosx++cosnx-cos(n-2)x+cos(n+1)x-cos(n-1)x]/(-2sinx)
=- [cos(n+1)x+cosnx-cosx-1]/2sinx=右边
等式证
三倍角公式推导
sin3a
=sin(2a+a)
=sin2acosa+cos2asina
=2sina(1-sin2a)+(1-2sin2a)sina
=3sina-4sin3a
cos3a
=cos(2a+a)
=cos2acosa-sin2asina
=(2cos2a-1)cosa-2(1-sin2a)cosa
=4cos3a-3cosa
sin3a=3sina-4sin3a
=4sina(3/4-sin2a)
=4sina[(√3/2)2-sin2a]
=4sina(sin260°-sin2a)
=4sina(sin60°+sina)(sin60°-sina)
=4sina2sin[(60+a)/2]cos[(60°-a)/2]2sin[(60°-a)/2]cos[(60°+a)/2]
=4sinasin(60°+a)sin(60°-a)
cos3a=4cos3a-3cosa
=4cosa(cos2a-3/4)
=4cosa[cos2a-(√3/2)2]
=4cosa(cos2a-cos230°)
=4cosa(cosa+cos30°)(cosa-cos30°)
=4cosa2cos[(a+30°)/2]cos[(a-30°)/2]{-2sin[(a+30°)/2]sin[(a-30°)/2]}
=-4cosasin(a+30°)sin(a-30°)
=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]
=-4cosacos(60°-a)[-cos(60°+a)]
=4cosacos(60°-a)cos(60°+a)
述两式相比
tan3a=tanatan(60°-a)tan(60°+a)
[编辑本段]三角函数诱导公式
公式:
设α任意角终边相同角同三角函数值相等:
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
公式二:
设α任意角π+α三角函数值与α三角函数值间关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α与 -α三角函数值间关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二公式三π-α与α三角函数值间关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式公式三2π-α与α三角函数值间关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α与α三角函数值间关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(k∈Z)
补充:6×9=54种诱导公式表格及推导(定名则定号则)
f(β)→
f(β)=↘
β↓
sinβ
cosβ
tanβ
cotβ
secβ
cscβ
360k+α
sinα
cosα
tanα
cotα
secα
cscα
90°-α
cosα
sinα
cotα
tanα
cscα
secα
90°+α
cosα
-sinα
-cotα
-tanα
-cscα
secα
180°-α
sinα
-cosα
-tanα
-cotα
-secα
cscα
180°+α
-sinα
-cosα
tanα
cotα
-secα
-cscα
270°-α
-cosα
-sinα
cotα
tanα
-cscα
-secα
270°+α
-cosα
sinα
-cotα
-tanα
cscα
-secα
360°-α
-sinα
cosα
-tanα
-cotα
secα
-cscα
-α
-sinα
cosα
-tanα
-cotα
secα
-cscα
定名则
90°奇数倍+α三角函数其绝值与α三角函数绝值互余函数90°偶数倍+α三角函数与α三角函数绝值相同奇余偶同奇变偶变
定号则
α看做锐角(注意看做)按所角象限取三角函数符号象限定号符号看象限
比:90°+α定名:90°90°奇数倍所应取余函数;定号:α看做锐角90°+α第二象限角第二象限角弦负余弦所sin(90°+α)=cosα , cos(90°+α)=-sinα 非神奇屡试爽~
[编辑本段]三角形与三角函数
1、弦定理:三角形各边所角弦比相等即a/sinA=b/sinB=c/sinC=2R .(其R外接圆半径)
2、第余弦定理:三角形任意边等于其两边及应角余弦交叉乘积即a=c cosB + b cosC
3、第二余弦定理:三角形任何边平等于其两边平减两边与夹角余弦积2倍即a^2=b^2+c^2-2bc cosA
4、切定理(napier比拟):三角形任意两边差比值等于应角半角差切比值即(a-b)/(a+b)=tan[(A-B)/2]/tan[(A+B)/2]=tan[(A-B)/2]/cot(C/2)
5、三角形恒等式:
于任意非直角三角形,三角形ABC,总tanA+tanB+tanC=tanAtanBtanC
证明:
已知(A+B)=(π-C)
所tan(A+B)=tan(π-C)
则(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)
整理
tanA+tanB+tanC=tanAtanBtanC
类似,我同求证:α+β+γ=nπ(n∈Z)总tanα+tanβ+tanγ=tanαtanβtanγ
[编辑本段]部高等内容
·高等代数三角函数指数表示(由泰勒级数易):
sinx=[e^(ix)-e^(-ix)]/(2i)
cosx=[e^(ix)+e^(-ix)]/2
tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]
泰勒展穷级数e^z=exp(z)=1+z/1+z^2/2+z^3/3+z^4/4+…+z^n/n+…
三角函数定义域已推广至整复数集
·三角函数作微程解:
于微程组 y=-y'';y=y''''通解Q,证明
Q=Asinx+Bcosx发定义三角函数
补充:由相应指数表示我定义种类似函数——双曲函数其拥与三角函数类似性质二者相映趣
:
角度a 0° 30° 45° 60° 90° 180°
1sina 0 1/2 √2/2 √3/2 1 0
2cosa 1 √3/2 √2/2 1/2 0 -1
3tana 0 √3/3 1 √3 / 0
4cota / √3 1 √3/3 0 /
(注:√根号)
[编辑本段]三角函数计算
幂级数
c0+c1x+c2x2++cnxn+=∑cnxn (n=0∞)
c0+c1(x-a)+c2(x-a)2++cn(x-a)n+=∑cn(x-a)n (n=0∞)
各项都整数幂幂函数, 其c0,c1,c2,cn及a都数, 种级数称幂级数
泰勒展式(幂级数展):
f(x)=f(a)+f'(a)/1!(x-a)+f''(a)/2!(x-a)2+f(n)(a)/n!(x-a)n+
实用幂级数:
ex = 1+x+x2/2!+x3/3!++xn/n!+
ln(1+x)= x-x2/3+x3/3-(-1)k-1xk/k+ (|x|<1)
sin x = x-x3/3!+x5/5!-(-1)k-1x2k-1/(2k-1)!+ (-∞<x<∞)
cos x = 1-x2/2!+x4/4!-(-1)kx2k/(2k)!+ (-∞<x<∞)
arcsin x = x + 1/2x3/3 + 13/(24)x5/5 + (|x|<1)
arccos x = π - ( x + 1/2x3/3 + 13/(24)x5/5 + ) (|x|<1)
arctan x = x - x^3/3 + x^5/5 - (x≤1)
sinh x = x+x3/3!+x5/5!+(-1)k-1x2k-1/(2k-1)!+ (-∞<x<∞)
cosh x = 1+x2/2!+x4/4!+(-1)kx2k/(2k)!+ (-∞<x<∞)
arcsinh x = x - 1/2x3/3 + 13/(24)x5/5 - (|x|<1)
arctanh x = x + x^3/3 + x^5/5 + (|x|<1)
解初等三角函数需记住公式便轻松作答竞赛往往用与图像结合求三角函数值、三角函数等式、面积等等
--------------------------------------------------------------------------------
傅立叶级数(三角级数)
f(x)=a0/2+∑(n=0∞) (ancosnx+bnsinnx)
a0=1/π∫(π-π) (f(x))dx
an=1/π∫(π-π) (f(x)cosnx)dx
bn=1/π∫(π-π) (f(x)sinnx)dx
三角函数数值符号
弦 第二象限 第三四象限负
余弦 第四象限 第二三象限负
切 第三象限 第二四象限负
[编辑本段]三角函数定义域值域
sin(x),cos(x)定义域R,值域〔-1,1〕
tan(x)定义域x等于π/2+kπ,值域R
cot(x)定义域x等于kπ,值域R
[编辑本段]初等三角函数导数
y=sinx---y'=cosx
y=cosx---y'=-sinx
y=tanx---y'=1/(cosx)^2; =(secx)^2;
y=cotx---y'=-1/(sinx)^2 =-(cscx)^2;
y=secx---y'=secxtanx
y=cscx---y'=-cscxcotx
y=arcsinx---y'=1/√1-x^2;
y=arccosx---y'=-1/√1-x^2;
y=arctanx---y'=1/(1+x^2;)
y=arccotx---y'=-1/(1+x^2;)
[编辑本段]反三角函数
三角函数反函数值函数反弦Arcsin x反余弦Arccos x反切Arctan x反余切Arccot x等各自表示其弦、余弦、切、余切、割、余割x角限制反三角函数单值函数反弦函数值y限y=-π/2≤y≤π/2y反弦函数主值记y=arcsin x;相应反余弦函数y=arccos x主值限0≤y≤π;反切函数y=arctan x主值限-π/2<y<π/2;反余切函数y=arccot x主值限0<y<π
反三角函数实际并能叫做函数并满足自变量应函数值要求其图像与其原函数关于函数y=x称其概念首先由欧拉提并且首先使用arc+函数名形式表示反三角函数f-1(x)
反三角函数主要三:
y=arcsin(x)定义域[-1,1]值域[-π/2,π/2]图象用红色线条;
y=arccos(x)定义域[-1,1]值域[0,π]图象用兰色线条;
y=arctan(x)定义域(-∞,+∞)值域(-π/2,π/2)图象用绿色线条;
sinarcsin(x)=x,定义域[-1,1],值域 -π/2,π/2
证明:设arcsin(x)=y,则sin(y)=x ,两式代式即
其几用类似
这篇文章我给大家整理了反三角函数的的求导公式以及反三角函数的相关公式,供参考!
反三角函数求导公式
反正弦函数的求导:(arcsinx)'=1/√(1-x^2)
反余弦函数的求导:(arccosx)'=-1/√(1-x^2)
反正切函数的求导:(arctanx)'=1/(1+x^2)
反余切函数的求导:(arccotx)'=-1/(1+x^2)
反三角函数负数关系公式arcsin(-x)=-arcsin(x)
arccos(-x)=π-arccos(x)
arctan(-x)=-arctan(x)
arccot(-x)=π-arccot(x)
反三角函数倒数关系公式arcsin(1/x)=arccsc(x)
arccos(1/x)=arcsec(x)
arctan(1/x)=arccot(x)=π/2-arctan(x)(x>0)
arccot(1/x)=arccot(x)=π/2-arccot(x)(x>0)
arccot(1/x)=arctan(x)+π=3π/2-arccot(x)(x<0)
反三角函数余角关系公式arcsin(x)+arccos(x)=π/2
arctan(x)+arccot(x)=π/2
arcsec(x)+arccsc(x)=π/2
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)