方法/步骤
在EXCEL中将角度转换成弧度有现成的函数RADIANS(),括号中引用角度,结果为弧度。
如果想要将角度转换成45°00′00″的格式,可以设置单元格格式为自定义格式,即利用时间格式将其定义为自己的角度形式。如图在类型中输入[h]“°”mm“′”ss“″”或[h]°mm′ss″,确认,其他相同。
如果直接将角度转换成上面的角度形式,则需要将原角度除以24再转换格式。如果不除24直接转化,会是这样的:
对于直接转化成角度格式的数据,可以直接使用RADIANS()函数计算弧度,而在直接转化基础上再除24的数据,计算时仍需乘24。
在EXCEL中使用三角函数进行计算时,引用的是弧度,而不是角度。
也可以利用π来将角度转换成弧度。根据他们的关系 弧度=(角度×π)/180
进行转化。EXCEL中引用π使用PI()。
反三角函数的特殊值:
arcsin 1=pi/2
arcsin 05=pi/6
arcsin (二分之根二)=pi/4
arcsin (二分之根三)=pi/3
arcsin 0=0
arcsin -1=-pi/2
arccos 1=0
arccos 05=pi/3
arccos (二分之根二)=pi/4
arccos (二分之根三)=pi/6
为了使单值的反三角函数所确定区间具有代表性,常遵循如下条件:
1、为了保证函数与自变量之间的单值对应,确定的区间必须具有单调性;
2、函数在这个区间最好是连续的(这里之所以说最好,是因为反正割和反余割函数是尖端的);
3、为了使研究方便,常要求所选择的区间包含0到π/2的角;
4、所确定的区间上的函数值域应与整函数的定义域相同。这样确定的反三角函数就是单值的,为了与上面多值的反三角函数相区别,在记法上常将Arc中的A改记为a,例如单值的反正弦函数记为arcsin x。
扩展资料:
反三角函数是反正弦arcsin x,反余弦arccos x,反正切arctan x,反余切arccot x,反正割arcsec x,反余割arccsc x这些函数的统称,各自表示其反正弦、反余弦、反正切、反余切 ,反正割,反余割为x的角。
三角函数的是个多值函数,三角函数的反函数不是单值函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数 y=x 对称。欧拉提出反三角函数的概念,并且首先使用了“arc+函数名”的形式表示反三角函数。
—反三角函数
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)