本文是在go version go1.13.15 darwin/amd64
上进行的
panic
能够改变程序的控制流,调用panic
后会立刻停止执行当前函数的剩余代码,并在当前Goroutine
中递归执行调用方的defer
;
recover
可以中止panic
造成的程序崩溃。它是一个只能在defer
中发挥作用的函数,在其他作用域中调用不会发挥作用;
举个栗子
package mainimport "fmt"func main() { fmt.Println(1) func() { fmt.Println(2) panic("3") }() fmt.Println(4)}
输出
12panic: 3goroutine 1 [running]:main.main.func1(...) /Users/yj/Go/src/Go-POINT/panic/main.go:9main.main() /Users/yj/Go/src/Go-POINT/panic/main.go:10 +0xee
panic
后会立刻停止执行当前函数的剩余代码,所以4没有打印出来
对于recover
panic只会触发当前Goroutine的defer;
recover只有在defer中调用才会生效;
panic允许在defer中嵌套多次调用;
package mainimport ( "fmt" "time")func main() { fmt.Println(1) defer func() { if err := recover(); err != nil { fmt.Println(err) } }() go func() { fmt.Println(2) panic("3") }() time.Sleep(time.Second) fmt.Println(4)}
上面的栗子,因为recover
和panic
不在同一个goroutine
中,所以不会捕获到
嵌套的demo
func main() { defer fmt.Println("in main") defer func() { defer func() { panic("3 panic again and again") }() panic("2 panic again") }() panic("1 panic once")}
输出
in mainpanic: 1 panic once panic: 2 panic again panic: 3 panic again and againgoroutine 1 [running]:...
多次调用panic
也不会影响defer
函数的正常执行,所以使用defer
进行收尾工作一般来说都是安全的。
error:可预见的错误
panic:不可预见的异常
需要注意的是,你应该尽可能地使用error
,而不是使用panic
和recover
。只有当程序不能继续运行的时候,才应该使用panic
和recover
机制。
panic
有两个合理的用例。
1、发生了一个不能恢复的错误,此时程序不能继续运行。 一个例子就是 web 服务器无法绑定所要求的端口。在这种情况下,就应该使用 panic,因为如果不能绑定端口,啥也做不了。
2、发生了一个编程上的错误。 假如我们有一个接收指针参数的方法,而其他人使用 nil 作为参数调用了它。在这种情况下,我们可以使用panic,因为这是一个编程错误:用 nil 参数调用了一个只能接收合法指针的方法。
在一般情况下,我们不应通过调用panic函数来报告普通的错误,而应该只把它作为报告致命错误的一种方式。当某些不应该发生的场景发生时,我们就应该调用panic。
总结下panic
的使用场景:
1、空指针引用
2、下标越界
3、除数为0
4、不应该出现的分支,比如default
5、输入不应该引起函数错误
看下实现先来看下_panic
的结构
// _panic 保存了一个活跃的 panic//// 这个标记了 go:notinheap 因为 _panic 的值必须位于栈上//// argp 和 link 字段为栈指针,但在栈增长时不需要特殊处理:因为他们是指针类型且// _panic 值只位于栈上,正常的栈指针调整会处理他们。////go:notinheaptype _panic struct { argp unsafe.Pointer // panic 期间 defer 调用参数的指针; 无法移动 - liblink 已知 arg interface{} // panic的参数 link *_panic // link 链接到更早的 panic recovered bool // panic是否结束 aborted bool // panic是否被忽略}
link
指向了保存在goroutine
链表中先前的panic
链表
编译器会将panic
装换成gopanic
,来看下执行的流程:
1、创建新的runtime._panic
并添加到所在Goroutine
的_panic
链表的最前面;
2、在循环中不断从当前Goroutine 的_defer
中链表获取runtime._defer
并调用runtime.reflectcall
运行延迟调用函数;
3、调用runtime.fatalpanic
中止整个程序;
// 预先声明的函数 panic 的实现func gopanic(e interface{}) { gp := getg() // 判断在系统栈上还是在用户栈上 // 如果执行在系统或信号栈时,getg() 会返回当前 m 的 g0 或 gsignal // 因此可以通过 gp.m.curg == gp 来判断所在栈 // 系统栈上的 panic 无法恢复 if gp.m.curg != gp { print("panic: ") printany(e) print("\n") throw("panic on system stack") } // 如果正在进行 malloc 时发生 panic 也无法恢复 if gp.m.malLocing != 0 { print("panic: ") printany(e) print("\n") throw("panic during malloc") } // 在禁止抢占时发生 panic 也无法恢复 if gp.m.preemptoff != "" { print("panic: ") printany(e) print("\n") print("preempt off reason: ") print(gp.m.preemptoff) print("\n") throw("panic during preemptoff") } // 在 g 锁在 m 上时发生 panic 也无法恢复 if gp.m.locks != 0 { print("panic: ") printany(e) print("\n") throw("panic holding locks") } // 下面是可以恢复的 var p _panic p.arg = e // panic 保存了对应的消息,并指向了保存在 goroutine 链表中先前的 panic 链表 p.link = gp._panic gp._panic = (*_panic)(noescape(unsafe.Pointer(&p))) atomic.Xadd(&runningPanicDefers, 1) for { // 开始逐个取当前 goroutine 的 defer 调用 d := gp._defer // 没有defer,退出循环 if d == nil { break } // 如果 defer 是由早期的 panic 或 Goexit 开始的(并且,因为我们回到这里,这引发了新的 panic), // 则将 defer 带离链表。更早的 panic 或 Goexit 将无法继续运行。 if d.started { if d._panic != nil { d._panic.aborted = true } d._panic = nil d.fn = nil gp._defer = d.link freedefer(d) continue } // 将deferred标记为started // 如果栈增长或者垃圾回收在 reflectcall 开始执行 d.fn 前发生 // 标记 defer 已经开始执行,但仍将其保存在列表中,从而 traceback 可以找到并更新这个 defer 的参数帧 // 标记defer是否已经执行 d.started = true // 记录正在运行的延迟的panic。 // 如果在延迟调用期间有新的panic,那么这个panic // 将在列表中找到d,并将标记d._panic(此panic)中止。 d._panic = (*_panic)(noescape(unsafe.Pointer(&p))) p.argp = unsafe.Pointer(getargp(0)) reflectcall(nil, unsafe.Pointer(d.fn), deferArgs(d), uint32(d.siz), uint32(d.siz)) p.argp = nil // reflectcall没有panic。删除d if gp._defer != d { throw("bad defer entry in panic") } d._panic = nil d.fn = nil gp._defer = d.link // trigger shrinkage to test stack copy. See stack_test.go:TestStackPanic //GC() pc := d.pc sp := unsafe.Pointer(d.sp) // must be pointer so it gets adjusted during stack copy freedefer(d) if p.recovered { atomic.Xadd(&runningPanicDefers, -1) gp._panic = p.link // 忽略的 panic 会被标记,但仍然保留在 g.panic 列表中 // 这里将它们移出列表 for gp._panic != nil && gp._panic.aborted { gp._panic = gp._panic.link } if gp._panic == nil { // 必须由 signal 完成 gp.sig = 0 } // 传递关于恢复帧的信息 gp.sigcode0 = uintptr(sp) gp.sigcode1 = pc // 调用 recover,并重新进入调度循环,不再返回 mcall(recovery) // 如果无法重新进入调度循环,则无法恢复错误 throw("recovery Failed") // mcall should not return } } // 消耗完所有的 defer 调用,保守地进行 panic // 因为在冻结之后调用任意用户代码是不安全的,所以我们调用 preprintpanics 来调用 // 所有必要的 Error 和 String 方法来在 startpanic 之前准备 panic 字符串。 preprintpanics(gp._panic) fatalpanic(gp._panic) // 不应该返回 *(*int)(nil) = 0 // 无法触及}// reflectcall 使用 arg 指向的 n 个参数字节的副本调用 fn。// fn 返回后,reflectcall 在返回之前将 n-retoffset 结果字节复制回 arg+retoffset。// 如果重新复制结果字节,则调用者应将参数帧类型作为 argtype 传递,以便该调用可以在复制期间执行适当的写障碍。// reflect 包传递帧类型。在 runtime 包中,只有一个调用将结果复制回来,即 cgocallbackg1,// 并且它不传递帧类型,这意味着没有调用写障碍。参见该调用的页面了解相关理由。//// 包 reflect 通过 linkname 访问此符号func reflectcall(argtype *_type, fn, arg unsafe.Pointer, argsize uint32, retoffset uint32)
梳理下流程
1、在处理panic
期间,会先判断当前panic
的类型,确定panic
是否可恢复;
2、可恢复的panic
,panic
的link
指向goroutine
链表中先前的panic
链表;
3、循环逐个获取当前goroutine
的defer
调用;
如果defer是由早期panic或Goexit开始的,则将defer带离链表,更早的panic或Goexit将无法继续运行,也就是将之前的panic终止掉,将aborted设置为true,在下面执行recover时保证goexit不会被取消;
recovered会在gorecover中被标记,见下文。当recovered被标记为true时,recovery函数触发Goroutine的调度,调度之前会准备好 sp、pc 以及函数的返回值;
当延迟函数中recover
了一个panic
时,就会返回1,当runtime.deferproc
函数的返回值是1时,编译器生成的代码会直接跳转到调用方函数返回之前并执行runtime.deferreturn
,跳转到runtime.deferturn
函数之后,程序就已经从panic
恢复了正常的逻辑。而runtime.gorecover
函数也能从runtime._panic
结构中取出了调用panic
时传入的arg
参数并返回给调用方。
// 在发生 panic 后 defer 函数调用 recover 后展开栈。然后安排继续运行,// 就像 defer 函数的调用方正常返回一样。func recovery(gp *g) { // Info about defer passed in G struct. sp := gp.sigcode0 pc := gp.sigcode1 // d's arguments need to be in the stack. if sp != 0 && (sp < gp.stack.lo || gp.stack.hi < sp) { print("recover: ", hex(sp), " not in [", hex(gp.stack.lo), ", ", hex(gp.stack.hi), "]\n") throw("bad recovery") } // 使 deferproc 为此 d 返回 // 这时候返回 1。调用函数将跳转到标准的返回尾声 gp.sched.sp = sp gp.sched.pc = pc gp.sched.lr = 0 gp.sched.ret = 1 gogo(&gp.sched)}
在recovery
函数中,利用g
中的两个状态码回溯栈指针sp
并恢复程序计数器pc
到调度器中,并调用gogo
重新调度g
,将g
恢复到调用recover
函数的位置,goroutine
继续执行,recovery
在调度过程中会将函数的返回值设置为1。调用函数将跳转到标准的返回尾声。
func deferproc(siz int32, fn *funcval) { // arguments of fn follow fn ... // deferproc returns 0 normally. // a deferred func that stops a panic // makes the deferproc return 1. // the code the compiler generates always // checks the return value and jumps to the // end of the function if deferproc returns != 0. return0() // No code can go here - the C return register has // been set and must not be clobbered.}
当延迟函数中recover
了一个panic
时,就会返回1,当runtime.deferproc
函数的返回值是1时,编译器生成的代码会直接跳转到调用方函数返回之前并执行runtime.deferreturn
,跳转到runtime.deferturn
函数之后,程序就已经从panic
恢复了正常的逻辑。而runtime.gorecover
函数也能从runtime._panic
结构中取出了调用panic
时传入的arg
参数并返回给调用方。
编译器会将recover
装换成gorecover
如果recover
被正确执行了,也就是gorecover
,那么recovered
将被标记成true
// go/src/runtime/panic.go// 执行预先声明的函数 recover。// 不允许分段栈,因为它需要可靠地找到其调用者的栈段。//// Todo(rsc): Once we commit to copyStackAlways,// this doesn't need to be nosplit.//go:nosplitfunc gorecover(argp uintptr) interface{} { // 必须在 panic 期间作为 defer 调用的一部分在函数中运行。 // 必须从调用的最顶层函数( defer 语句中使用的函数)调用。 // p.argp 是最顶层 defer 函数调用的参数指针。 // 比较调用方报告的 argp,如果匹配,则调用者可以恢复。 gp := getg() p := gp._panic if p != nil && !p.recovered && argp == uintptr(p.argp) { // 标记recovered p.recovered = true return p.arg } return nil}
在正常情况下,它会修改runtime._panic
的recovered
字段,runtime.gorecover
函数中并不包含恢复程序的逻辑,程序的恢复是由runtime.gopanic
函数负责。
gorecover
将recovered
标记为true,然后gopanic
就可以通过mcall
调用recovery
并重新进入调度循环
runtime.fatalpanic
实现了无法被恢复的程序崩溃,它在中止程序之前会通过runtime.printpanics
打印出全部的panic
消息以及调用时传入的参数:
// go/src/runtime/panic.go// fatalpanic 实现了不可恢复的 panic。类似于 fatalthrow,// 如果 msgs != nil,则 fatalpanic 仍然能够打印 panic 的消息// 并在 main 在退出时候减少 runningPanicDefeRSS////go:nosplitfunc fatalpanic(msgs *_panic) { // 返回程序计数寄存器指针 pc := getcallerpc() // 返回堆栈指针 sp := getcallersp() // 返回当前G gp := getg() var docrash bool // 切换到系统栈来避免栈增长,如果运行时状态较差则可能导致更糟糕的事情 systemstack(func() { if startpanic_m() && msgs != nil { // 有 panic 消息和 startpanic_m 则可以尝试打印它们 // startpanic_m 设置 panic 会从阻止 main 的退出, // 因此现在可以开始减少 runningPanicDefers 了 atomic.Xadd(&runningPanicDefers, -1) printpanics(msgs) } docrash = dopanic_m(gp, pc, sp) }) if docrash { // 通过在上述 systemstack 调用之外崩溃,调试器在生成回溯时不会混淆。 // 函数崩溃标记为 nosplit 以避免堆栈增长。 crash() } // 从系统推出 systemstack(func() { exit(2) }) *(*int)(nil) = 0 // not reached}// 打印出当前活动的panicfunc printpanics(p *_panic) { if p.link != nil { printpanics(p.link) print("\t") } print("panic: ") printany(p.arg) if p.recovered { print(" [recovered]") } print("\n")}
总结引一段来自【panic 和recover】的总结
1、编译器会负责做转换关键字的工作;
1、将panic
和recover
分别转换成runtime.gopanic
和runtime.gorecover
;
2、将defer
转换成runtime.deferproc
函数;
3、在调用defer
的函数末尾调用runtime.deferreturn
函数;
2、在运行过程中遇到runtime.gopanic
方法时,会从Goroutine
的链表依次取出runtime._defer
结构体并执行;
3、如果调用延迟执行函数时遇到了runtime.gorecover
就会将_panic.recovered
标记成true
并返回panic
的参数;
1、在这次调用结束之后,runtime.gopanic
会从runtime._defer
结构体中取出程序计数器pc
和栈指针sp
并调用runtime.recovery
函数进行恢复程序;
2、runtime.recovery
会根据传入的pc
和sp
跳转回runtime.deferproc
;
3、编译器自动生成的代码会发现runtime.deferproc
的返回值不为0
,这时会跳回runtime.deferreturn
并恢复到正常的执行流程;
4、如果没有遇到runtime.gorecover
就会依次遍历所有的runtime._defer
,并在最后调用runtime.fatalpanic
中止程序、打印panic
的参数并返回错误码2
;
【panic 和 recover】https://draveness.me/golang/docs/part2-foundation/ch05-keyword/golang-panic-recover/
【恐慌与恢复内建函数】https://golang.design/under-the-hood/zh-cn/part1basic/ch03lang/panic/
【Go语言panic/recover的实现】https://zhuanlan.zhihu.com/p/72779197
【panic and recover】https://eddycjy.gitbook.io/golang/di-6-ke-chang-yong-guan-jian-zi/panic-and-recover#yuan-ma
【翻了源码,我把 panic 与 recover 给彻底搞明白了】https://jishuin.proginn.com/p/763bfbd4ed8c
以上是内存溢出为你收集整理的go中panic源码解读全部内容,希望文章能够帮你解决go中panic源码解读所遇到的程序开发问题。
如果觉得内存溢出网站内容还不错,欢迎将内存溢出网站推荐给程序员好友。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)