洛谷 P1962https://www.luogu.com.cn/problem/P1962
解题思路:用到了矩阵快速幂的想法,首先就是推导出 矩阵递推式。
先来几个模板: 矩阵乘法模板:
缺点:运算了m*n*s次
#include
using namespace std;
const int mod = 1e7 + 10, N = 100;
int ans[N][N], a[N][N], b[N][N];
int m, n, s;
void mul(int a[][N], int b[][N])
{
for (int i = 1; i <= m; i++)
for (int j = 1; j <= s; j++)
for (int k = 1; k <= n; k++)
ans[i][j] += a[i][k] * b[k][j];
}
int main() {
cin >> m >> n;
for (int i = 1; i <= m; i++)
for (int j = 1; j <= n; j++)
cin >> a[i][j];
cin >> n >> s;
for (int i = 1; i <= n; i++)
for (int j = 1; j <= s; j++)
cin >> b[i][j];
mul(a, b);
cout << endl;
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= s; j++)
cout << ans[i][j] << " ";
cout << endl;
}
return 0;
}
轻微优化速度:
#include
using namespace std;
const int N = 110;
int ans[N][N], a[N][N], b[N][N], tmp;
int n, m, s;
void mul(int a[][N], int b[][N]) {
for (int k = 1; k <= n; k++) {
for (int i = 1; i <= m; i++) {
tmp = a[i][k];
for (int j = 1; j <= s; j++)
ans[i][j] += tmp * b[k][j];
}
}
}
int main() {
cin >> m >> n;
for (int i = 1; i <= m; i++)
for (int j = 1; j <= n; j++)
cin >> a[i][j];
cin >> n >> s;
for (int i = 1; i <= n; i++)
for (int j = 1; j <= s; j++)
cin >> b[i][j];
mul(a, b);
cout << endl;
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= s; j++)
cout << ans[i][j] << " ";
cout << endl;
}
return 0;
}
矩阵快速幂模板
#include
#include
#include
using namespace std;
const int N = 110;
typedef long long LL;
LL a, b;
struct Mac {
LL mac[N][N];
}ans, res,start;
Mac mul(Mac x, Mac y) {
Mac z;
memset(z.mac, 0, sizeof z.mac);
for (int k = 1; k <= a; k++)
for (int i = 1; i <= a; i++)
for (int j = 1; j <= a; j++)
z.mac[i][j] += x.mac[i][k] * y.mac[k][j];
return z;
}
Mac qmi(Mac x, LL y) {
for (int i = 1; i <= a; i++)res.mac[i][i] = 1;
while (y) {
if (y & 1)res = mul(res, x);
y >>= 1;
x = mul(x, x);
}
return res;
}
int main() {
cin >> a >> b;
for (int i = 1; i <= a; i++)
for (int j = 1; j <= a; j++)
cin >> start.mac[i][j];
ans = qmi(start, b);
for (int i = 1; i <= a; i++) {
for (int j = 1; j <= a; j++)
cout << ans.mac[i][j] << " ";
cout << endl;
}
}
本题题解:(最后输出一定一定要%mod!)
#include
#include
using namespace std;
const int N = 10, mod = 1e9 + 7;
typedef long long LL;
LL n, m[N][N], fn[N][N];
struct Mac {
LL mac[N][N];
}ans, key, res;
Mac mul(Mac x, Mac y) {
Mac z;
memset(z.mac, 0, sizeof z.mac);
for (int k = 1; k <= 2; k++)
for (int i = 1; i <= 2; i++)
for (int j = 1; j <= 2; j++)
z.mac[i][j] = (z.mac[i][j]+x.mac[i][k] * y.mac[k][j])%mod;
return z;
}
void qmi() {
for (int i = 1; i <= 2; i++)ans.mac[i][i] = 1;
while (n)
{
if (n & 1)ans = mul(ans, key);
n >>= 1;
key = mul(key, key);
}
}
int main() {
cin >> n;
if (n <= 2)cout << "1" << endl;
else {
fn[1][1] = 1, fn[1][2] = 1;
for (int i = 1; i <= 2; i++)
for (int j = 1; j <= 2; j++)
key.mac[i][j] = 1;
key.mac[2][2] = 0;
n -= 2;
qmi();
for (int k = 1; k <= 2; k++)
for (int i = 1; i <= 2; i++)
for (int j = 1; j <= 2; j++)
m[i][j] += (fn[i][k] % mod*ans.mac[k][j]%mod )%mod;
cout << m[1][1]%mod << endl;
}
return 0;
}
瞻仰一下dalao的代码码风:
#include
#include
using namespace std;
const int mod = 1e9+7;
typedef long long LL;
struct Matrix {
int a[3][3];
Matrix() { memset(a, 0, sizeof a); } // 构造函数,矩阵初始化全零
Matrix operator*(const Matrix& b) const {
Matrix res;
for (int i = 1; i <= 2; i++)
for (int j = 1; j <= 2; j++)
for (int k = 1; k <= 2; k++)
res.a[i][j] = (res.a[i][j] + a[i][k] * b.a[k][j]) % mod;
return res;
}
} ans, base;
void init() { // 初始化 ans、base 矩阵
base.a[1][1] = base.a[1][2] = base.a[2][1] = 1;
ans.a[1][1] = ans.a[1][2] = 1;
}
void qpow(int b) { // 求
while (b) {
if (b & 1) ans = ans * base;
base = base * base;
b >>= 1;
}
}
int main() {
LL n;
cin >> n;
if (n <= 2) cout << "1" << endl;
else {
init();
qpow(n - 2);
cout << ans.a[1][1] % mod;
}
return 0;
}
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)