LeetCode307 区域和检索-数组可修改[线段树] HERODING的LeetCode之路

LeetCode307 区域和检索-数组可修改[线段树] HERODING的LeetCode之路,第1张


解题思路:
刚上手这道题,第一想法是调用vector的accumulate函数, 直接返回求和,终究是我太年轻了,超时了,代码如下:

class NumArray {
private:
    vector<int> nums;
public:
    NumArray(vector<int>& nums) {
        this->nums = nums;
    }
    
    void update(int index, int val) {
        nums[index] = val;
    }
    
    int sumRange(int left, int right) {
        return accumulate(nums.begin() + left, nums.begin() + right + 1, 0);
    }
};

/**
 * Your NumArray object will be instantiated and called as such:
 * NumArray* obj = new NumArray(nums);
 * obj->update(index,val);
 * int param_2 = obj->sumRange(left,right);
 */

紧接着想到前缀和的方法,但是一想到更新数组中元素,又要花费O(N)的时间去修改前缀和数组,无奈超时,代码如下:

class NumArray {
private:
    vector<int> nums;
    vector<int> pre;
    int n;
public:
    NumArray(vector<int>& nums) {
        this->nums = nums;
        n = nums.size();
        pre = vector<int>(n + 1, 0);
        for(int i = 0; i < n; i ++) {
            pre[i + 1] = pre[i] + nums[i];
        }
    }
    
    void update(int index, int val) {
        int change = nums[index] - val;
        nums[index] = val;
        for(int i = index + 1; i <= n; i ++) {
            pre[i] = pre[i] - change;
        }
    }
    
    int sumRange(int left, int right) {
        return pre[right + 1] - pre[left];
    }
};

/**
 * Your NumArray object will be instantiated and called as such:
 * NumArray* obj = new NumArray(nums);
 * obj->update(index,val);
 * int param_2 = obj->sumRange(left,right);
 */

这里涉及一个新的知识点,线段树,通过把每个元素的val存储在线段树中,每个线段树的节点的值为两个子树的和,这样在查找和更新的时候将时间复杂度下降到O(logN),有效解决了超时问题,代码如下:

class NumArray {
private:
    vector<int> segmentTree;
    int n;

    void build(int node, int s, int e, vector<int> &nums) {
        // 如果区间仅为node
        if (s == e) {
            segmentTree[node] = nums[s];
            return;
        }
        int m = s + (e - s) / 2;
        // 左子节点递归
        build(node * 2 + 1, s, m, nums);
        // 右子节点递归
        build(node * 2 + 2, m + 1, e, nums);
        segmentTree[node] = segmentTree[node * 2 + 1] + segmentTree[node * 2 + 2];
    }

    // 元素修改,更新线段树
    void change(int index, int val, int node, int s, int e) {
        if (s == e) {
            segmentTree[node] = val;
            return;
        }
        int m = s + (e - s) / 2;
        if (index <= m) {// 从左节点找 
            change(index, val, node * 2 + 1, s, m);
        } else { // 从右节点找
            change(index, val, node * 2 + 2, m + 1, e);
        }
        // 线段树统计左右节点求和
        segmentTree[node] = segmentTree[node * 2 + 1] + segmentTree[node * 2 + 2];
    }

    int range(int left, int right, int node, int s, int e) {
        // 如果区间范围正好满足
        if (left == s && right == e) {
            return segmentTree[node];
        }
        int m = s + (e - s) / 2;
        // 区间在左子节点上
        if (right <= m) {
            return range(left, right, node * 2 + 1, s, m);
        } else if (left > m) {// 区间在右子节点上
            return range(left, right, node * 2 + 2, m + 1, e);
        } else {// 区间在左右节点之间,分成两个区间进行查找
            return range(left, m, node * 2 + 1, s, m) + range(m + 1, right, node * 2 + 2, m + 1, e);
        }
    }

public:
    NumArray(vector<int>& nums) : n(nums.size()), segmentTree(nums.size() * 4) {
        build(0, 0, n - 1, nums);
    }

    void update(int index, int val) {
        change(index, val, 0, 0, n - 1);
    }

    int sumRange(int left, int right) {
        return range(left, right, 0, 0, n - 1);
    }
};

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/565159.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-04-06
下一篇 2022-04-06

发表评论

登录后才能评论

评论列表(0条)

保存