目录
xgboost预测钢管混凝土柱极限承载力
1.1导入pandas及numpy和画图包
1.2导入数据
1.3划分训练集与测试集
1.4导入xgboost包
1.5导入误差分析模块
1.6进行交叉验证定义
1.7模型训练
1.8打印误差
xgboost预测钢管混凝土柱极限承载力 1.1导入pandas及numpy和画图包
导入数据包
# @Time : 2022/1/22 11:56
# @Author : hongzt
# @File : xgbt
import pandas as pd
import numpy as np
import warnings
warnings.filterwarnings("ignore")
from matplotlib import pyplot as plt
1.2导入数据
将数据转成csv后导入pycharm
train= pd.read_csv('E:\database\cfst\lincacfst.csv')
dem=train[["D (mm)","t (mm)","Le (mm)","fy (MPa)","fc (MPa)"]].values
object=train[["N Test (kN)"]].values
1.3划分训练集与测试集
基于skeran分类器划分测试集与训练集,按0.7与0.3划分
from sklearn.model_selection import train_test_split
x_train,x_test,y_trian,y_test=train_test_split(dem,object,test_size=0.3,shuffle=True)
1.4导入xgboost包
导入xgboost包,准备模型训练
import xgboost as xgbt
1.5导入误差分析模块
from sklearn.metrics import mean_squared_error
1.6进行交叉验证定义
from sklearn.model_selection import KFold
kf=KFold(n_splits=10)
rmse=[]
1.7模型训练
for train_indices,test_indices in kf.split(dem):
X_train,X_test=dem[train_indices],dem[test_indices]
Y_train, Y_test = object[train_indices], object[test_indices]
xgbtRLR=xgbt.XGBRFRegressor()
xgbtRLR.fit(X_train,Y_train)
y_pred = xgbtRLR.predict(X_test)
RSM=mean_squared_error(Y_test,y_pred)
rmse.append(RSM)
1.8打印误差
print(rmse)
print(f'average rmse:{np.mean(rmse)}')
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)