😊四月的第一篇博客,希望一整个四月都可以开开心心、顺顺利利呀。
好运发射给读到这篇博客的每个人。
biu,biu,biu~~~
02/04/2022 16:00
灰色系统理论及其应用系列博文:
一、灰色关联度分析法(GRA)_python
二、灰色预测模型GM(1,1)
三、灰色预测模型GM(1,n)
四、灰色预测算法改进1_背景值Z的改进
五、灰色预测改进2—三角残差拟合
注:本文所有的算法及理论均来自论文
A trigonometric grey prediction approach to forecasting electricity demand
.
文章目录
一、基于三角残差拟合的算法
- 1、算法
- 2、扩展到区间预测
- 3、实例
- 3.1 代码
- 3.2 结果
参考文献:
[1] A trigonometric grey prediction approach to forecasting electricity demand.
一、基于三角残差拟合的算法
该算法适用于拟合既有线性趋势又有周期趋势
(季节性)且数据量较少的序列。
-
获取残差序列
-
三角函数模型处理残差序列
L是用户自定义循环周期分量, ε \varepsilon ε是随机分量。对于
季度的电力需求
,有L=4;对于月度的电力需求
,有L=12。注意因为季节效应显然是主要的循环变化。
对于
年用电量
,L 应该反映经济波动的周期性周期,取决于历史数据量。当有大约 20 年的年度数据时,我们的建议是 15 ≤ L ≤ 30 15 \leq L \leq 30 15≤L≤30,因为根据我们的初步实验,这样的选择可能很好地捕捉到残差序列的模式。
同时,由最小二乘法可以得到:
-
获得残差序列的预测值 r ^ ( 0 ) ( k ) \hat{r}^{(0)}(k) r^(0)(k)
-
获得灰度预测值
其中 x ^ t r ( 0 ) ( k ) \hat{x}^{(0)}_{tr}(k) x^tr(0)(k)表示GM(1,1)模型的输出 x ^ ( 0 ) ( k ) \hat{x}^{(0)}(k) x^(0)(k)的预测值。
上述讨论都是基于点的预测, 为了平衡电力公司运营和管理中的供需,合理的电力需求区间预测是非常有用的。
文献 [1] 提供了年电力需求的灰色预测区间,但他们的方法仅限于原始 GM(1,1) 模型。
我们现在将为我们的三角灰色预测模型提供一个预测区间
。
请注意,方程给出的三角残差修正模型。
(11) 本质上是一个多元线性回归模型。
由于GM(1,1) 模型和三角残差修正模型分别有两个和四个参数,我们的三角灰色预测方法占据的总自由度是六个。
当历史数据点数超过6个时,可以用过大的自由度来估计残差的方差,然后再估计预测区间。
相反,在傅里叶灰色预测方法中,几乎所有的自由度都用于参数估计。
遵循多元回归分析中区间预测的思想,我们给出了 x ^ ( 0 ) ( k ) \hat{x}^{(0)}(k) x^(0)(k) 的 100 ( 1 − α ) 100(1-\alpha)% 100(1−α)% 预测区间如下:
3、实例我们首先对中国年度电力需求预测进行实证说明,以检验我们的三角灰色预测方法的性能。
由于 1970 年代后期改革开放前后经济发展方式的不同,这两个时期中国的用电模式也大相径庭。
因此,我们在研究中使用了 1980 年以后的年度电力需求数据。
数据来自中国统计年鉴,其中1981-1998年的数据用于模型构建,而1999-2002年的数据用作事后测试数据集。
当使用三角灰色预测方法对中国年电力需求进行建模和预测时,我们使用
L
=
23
L=23
L=23,因为这是推荐界限的平均值。
我们的初步实验表明,在本案例研究的推荐区间内,预测值对 L 非常不敏感。
但是,这并不意味着原始 GM(1,1) 预测的残差没有周期性变化。
从Fig.1中我们可以发现,残差呈现出一些周期性变化,并且幅度随着时间的推移变得越来越大。
在此图中,预测值对 L 不敏感的一个可能原因是年度数据案例的残差的季节性可能不强。
下面将采用原始的GM(1,1)算法,和基于三角残差拟合的GM(1,1)算法,给出两者的算法及效果对比:
3.1 代码注意该代码中标有两个类,
GM_trig
和GM11
,其中,GM11
是原始的灰度预测算法类;GM_trig
是三角残差拟合的算法类。
# -*- coding: utf-8 -*-
# @Time : 2022/3/30 14:44
# @Author : Orange
# @File : gm_trigonometric.py
from decimal import *
import math
class GM_trig():
def __init__(self, X0, X0_hat, L):
'''
:param X0: 原始序列
:param X0_hat: 采用GM(1,1)后获得的序列
:param L: 用户自定义的循环周期分量
'''
self.X0 = X0
self.X0_hat = X0_hat
self.R0 = (X0 - X0_hat)[1:] # 残差
self.L = L
self.n = len(self.X0)
self.B = None
def train(self):
self.B = np.array(
[[1] * (self.n - 1), np.arange(1, self.n), [np.sin(2 * i * math.pi / self.L) for i in range(1, self.n)],
[np.cos(2 * i * math.pi / self.L) for i in range(1, self.n)]]).T
R_n = np.array(self.R0).reshape(self.n - 1, 1)
b_hat = np.linalg.inv(np.matmul(self.B.T, self.B)).dot(self.B.T).dot(R_n)
self.f_R0 = lambda k: b_hat[0][0] + b_hat[1][0] * k + b_hat[2][0] * np.sin(2 * k * math.pi / self.L) + b_hat[3][
0] * np.cos(2 * k * math.pi / self.L)
def predict(self, k, X_all_0_hat):
'''
:param k: 给出从0,k的预测值
:param X_all_0_hat: 所有数据(训练+测试)的GM(1,1)预测值列表
:return:
'''
R0_hat = [self.f_R0(k) for k in range(1, k)]
R0_hat.insert(0, 0)
X_tr_hat = X_all_0_hat + R0_hat
return X_tr_hat
def interval_pred(self, X_tr_hat, t_val, k):
s = math.sqrt(sum((X_tr_hat[:self.n] - self.X0) ** 2) / (self.n - 6))
l_bound = []
h_bound = []
for k in range(1, k):
Y_k = np.array([1, k, np.sin(2 * k * math.pi / self.L), np.cos(2 * k * math.pi / self.L)]).reshape(4, 1)
h_kk = Y_k.T.dot(np.linalg.inv(np.matmul(self.B.T, self.B))).dot(Y_k)[0][0]
ll_k = X_tr_hat[k] - t_val * s * math.sqrt(1 + h_kk)
hh_k = X_tr_hat[k] + t_val * s * math.sqrt(1 + h_kk)
l_bound.append(ll_k)
h_bound.append(hh_k)
return l_bound, h_bound
class GM11():
def __init__(self):
self.f = None
def isUsable(self, X0):
'''判断是否通过光滑检验'''
X1 = X0.cumsum()
rho = [X0[i] / X1[i - 1] for i in range(1, len(X0))]
rho_ratio = [rho[i + 1] / rho[i] for i in range(len(rho) - 1)]
print("rho:", rho)
print("rho_ratio:", rho_ratio)
flag = True
for i in range(2, len(rho) - 1):
if rho[i] > 0.5 or rho[i + 1] / rho[i] >= 1:
flag = False
if rho[-1] > 0.5:
flag = False
if flag:
print("数据通过光滑校验")
else:
print("该数据未通过光滑校验")
'''判断是否通过级比检验'''
lambds = [X0[i - 1] / X0[i] for i in range(1, len(X0))]
X_min = np.e ** (-2 / (len(X0) + 1))
X_max = np.e ** (2 / (len(X0) + 1))
for lambd in lambds:
if lambd < X_min or lambd > X_max:
print('该数据未通过级比检验')
return
print('该数据通过级比检验')
def train(self, X0):
X1 = X0.cumsum()
Z = (np.array([-0.5 * (X1[k - 1] + X1[k]) for k in range(1, len(X1))])).reshape(len(X1) - 1, 1)
# 数据矩阵A、B
A = (X0[1:]).reshape(len(Z), 1)
B = np.hstack((Z, np.ones(len(Z)).reshape(len(Z), 1)))
# 求灰参数
a, u = np.linalg.inv(np.matmul(B.T, B)).dot(B.T).dot(A)
u = Decimal(u[0])
a = Decimal(a[0])
print("灰参数a:", a, ",灰参数u:", u)
self.f = lambda k: (Decimal(X0[0]) - u / a) * np.exp(-a * k) + u / a
def predict(self, k):
X1_hat = [float(self.f(k)) for k in range(k)]
X0_hat = np.diff(X1_hat)
X0_hat = np.hstack((X1_hat[0], X0_hat))
return X0_hat
def evaluate(self, X0_hat, X0):
'''
根据后验差比及小误差概率判断预测结果
:param X0_hat: 预测结果
:return:
'''
S1 = np.std(X0, ddof=1) # 原始数据样本标准差
S2 = np.std(X0 - X0_hat, ddof=1) # 残差数据样本标准差
C = S2 / S1 # 后验差比
Pe = np.mean(X0 - X0_hat)
temp = np.abs((X0 - X0_hat - Pe)) < 0.6745 * S1
p = np.count_nonzero(temp) / len(X0) # 计算小误差概率
print("原数据样本标准差:", S1)
print("残差样本标准差:", S2)
print("后验差比:", C)
print("小误差概率p:", p)
def MAPE(y_true, y_pred):
"""计算MAPE"""
n = len(y_true)
mape = sum(np.abs((y_true - y_pred) / y_true)) / n * 100
return mape
if __name__ == '__main__':
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
plt.rcParams['font.sans-serif'] = ['SimHei'] # 步骤一(替换sans-serif字体)
plt.rcParams['axes.unicode_minus'] = False # 步骤二(解决坐标轴负数的负号显示问题)
# 原始数据X
data = pd.read_csv("test.csv")
X = data["val"].values
# 训练集
X_train = X[:-4]
# 测试集
X_test = X[-4:]
model = GM11()
model.isUsable(X_train) # 判断模型可行性
model.train(X_train) # 训练
Y_pred = model.predict(len(X)) # 预测
Y_train_pred = Y_pred[:len(X_train)]
Y_test_pred = Y_pred[len(X_train):]
score_test = model.evaluate(Y_test_pred, X_test) # 评估
print("gm(1,1)_mape:", MAPE(Y_train_pred, X_train), "%")
model_trig = GM_trig(X_train, Y_train_pred, L=23)
model_trig.train()
result = model_trig.predict(len(X), Y_pred)
X_train_pred = result[:-4]
X_test_pred = result[-4:]
l_bound, h_bound = model_trig.interval_pred(result, 2.179, len(X))
# 可视化
plt.grid()
plt.plot(np.arange(len(X_train)), X_train, '->')
plt.plot(np.arange(len(X_train)), X_train_pred, '-o')
plt.plot(np.arange(len(X_train)), Y_train_pred, '-*')
plt.legend(['负荷实际值', '三角残差预测值', 'GM(1,1)预测值'])
print("gm(1,1)_trig_mape:", MAPE(X_train_pred, X_train), "%")
plt.title('训练集')
plt.show()
# 可视化
plt.grid()
plt.plot(np.arange(len(X_test)), X_test, '->')
plt.plot(np.arange(len(X_test)), X_test_pred, '-o')
plt.plot(np.arange(len(X_test)), Y_test_pred, '-*')
plt.legend(['负荷实际值', '三角残差预测值', 'GM(1,1)预测值'])
plt.title('测试集')
plt.show()
# 区间预测可视化
plt.figure(figsize = (10, 4))
plt.grid(axis='y')
plt.plot(np.arange(1, 22), h_bound,'k--.')
plt.plot(np.arange(1, 22), l_bound,'k-->')
plt.plot(np.arange(22), X,'r-o')
plt.plot(np.arange(22), result,'b-d')
plt.legend(['上界', '下界', '真实值','预测值'])
plt.title('灰度预测——区间预测')
plt.show()
3.2 结果
1、给出两个模型在训练集和测试集上的
预测结果以及RE误差、MAPE、MAD、MSE
并可视化,对比下面结果可以看出基于三角残差拟合的灰度预测算法,预测误差有了明显降低。
4、区间估计
经查询t分布的表格,可以得出,双边分布的n=12的95%置信度,对应的 t n ( 0.5 / 2 ) t_n(0.5/2) tn(0.5/2)值为2.179,代入model_trig.interval_pred()得到如下结果,可以看到真实值被限制在了预测的区间之间
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)