sklearn基于picklejoblib 的模型保存及加载

sklearn基于picklejoblib 的模型保存及加载,第1张

sklearn(scikit-learn)模型持久化有两种方式:

  • Python的内置模块pickle
  • scikit-learn内部的joblib
1. pickle 模型保存及加载

模型定义及训练:

from sklearn import svm
from sklearn import datasets
model_xgb = svm.SVC()
X, y= datasets.load_iris(return_X_y=True)
model_xgb.fit(X, y)

基于 pickle 实现模型保存及加载:

import pickle 

#1.保存成Python支持的文件格式Pickle
#在当前目录下可以看到new_app_model_v1.pickle
with open('new_app_model_v1.pickle','wb') as fw:
	pickle.dump(model_xgb,fw)
#加载svm.pickle
with open('new_app_model_v1.pickle','rb') as fr:
	new_app_model_v1 = pickle.load(fr)

print (new_app_model_v1.predict_proba(X_test[0:1].values))
2. joblib 模型保存及加载

在大量数据的情况下,最好使用scikit-learn的的joblib代替python的pickle(dump&load),这在内部装有大型numpy数组的对象上效率更高。



总结起来,joblib更适合大数据量的模型,不过joblib只能往硬盘存储,不能往字符串存储。


from sklearn.externals import joblib

# 保存模型
joblib.dump(model_xgb, 'new_app_model_v1.pkl')
print("Model dumped!")

# 把训练集中的列名保存为pkl
model_columns = list(X_train.columns)
joblib.dump(model_columns, 'new_app_model_v1_columns.pkl')
print("Models columns dumped!")

new_app_model_v1 = joblib.load('new_app_model_v1.pkl')  # Load "model.pkl"
print('Model loaded')
new_app_model_v1_columns = joblib.load('new_app_model_v1_columns.pkl')  
# Load "model_columns.pkl"

print('Model columns loaded')
print (new_app_model_v1.predict_proba(X_test[0:1].values))

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/570432.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-04-09
下一篇 2022-04-09

发表评论

登录后才能评论

评论列表(0条)

保存