YOLOv3使用笔记

YOLOv3使用笔记,第1张

目录

使用免费的DL环境

Google Cloud Platform (GCP) 深度学习虚拟机 (VM)(推荐!)

Google Colab Notebook

Amazon Web Services

数据集标注工具

Roboflow(推荐!)

CVAT

labelimg

训练可视化

wandb(推荐!)

tensorboardX

YOLOv3安装与使用

自定义训练YOLOv3

OpenCV与YOLOv3的结合

其他YOLOv3_C++使用方法

别人的开源代码



使用免费的DL环境 Google Cloud Platform (GCP) 深度学习虚拟机 (VM)(推荐!)

可以免费获得300美元的额度

教程:GCP Quickstart · ultralytics/yolov5 Wiki · GitHub

Google Colab Notebook

免费使用,提供GPU

教程:https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb

Amazon Web Services

可以免费获得试用额度

链接:亚马逊AWS海外区域账户免费套餐_免费云服务-AWS云服务

数据集标注工具 Roboflow(推荐!)

官网:Overview - Roboflow

教程:How to Train YOLOv5 On a Custom Dataset

CVAT

官网:Computer Vision Annotation Tool

教程:How to use CVAT for computer vision [2022 updates]

labelimg

官网:GitHub - tzutalin/labelImg: 🖍️ LabelImg is a graphical image annotation tool and label object bounding boxes in images

教程:LabelImg for computer vision annotation

训练可视化 wandb(推荐!)

官网:Weights & Biases

tensorboardX

官网:GitHub - lanpa/tensorboardX: tensorboard for pytorch (and chainer, mxnet, numpy, ...)

YOLOv3安装与使用

官方网站:YOLO: Real-Time Object Detection

官方Github: ONNX > CoreML > TFLite">GitHub - ultralytics/yolov3: YOLOv3 in PyTorch > ONNX > CoreML > TFLite

官方文档:YOLOv5 Documentation

官方论文:https://arxiv.org/abs/1804.02767v1

自定义训练YOLOv3

教程:Training YOLOv3 : Deep Learning based Custom Object Detector | LearnOpenCV #

使用Darknet框架训练模型,该框架为C语言编写。

1、下载并编译

cd ~
git clone https://github.com/pjreddie/darknet
cd darknet
# 使用nproc可以看可用核心数
make -j4

2、准备数据集

下载数据集,并拆分为训练集(70%~90%)和测试集(10%~30%)。

数据集拆分脚本splitTrainAndTest.py示例:

import random
import os
import subprocess
import sys

def split_data_set(image_dir):
    f_val = open("test.txt", 'w')
    f_train = open("train.txt", 'w')
    
    path, dirs, files = next(os.walk(image_dir))
    data_size = len(files)

    ind = 0
    data_test_size = int(0.1 * data_size)
    test_array = random.sample(range(data_size), k=data_test_size)
    
    for f in os.listdir(image_dir):
        if(f.split(".")[1] == "jpg"):
            ind += 1
            
            if ind in test_array:
                f_val.write(image_dir+'/'+f+'\n')
            else:
                f_train.write(image_dir+'/'+f+'\n')

split_data_set(sys.argv[1])

用法:

python3 splitTrainAndTest.py ./path/JPEGImages/

3、标注数据集

使用软件对数据集进行标注。其中标签文件中的每一行条目代表图像中的单个边界框,并包含有关该框的以下信息:

    
  • object-class-id是一个整数,表示对象的类别。它的范围从 0 到(类数 - 1)。在我们当前的例子中,因为我们只有一个类别,所以它总是设置为 0。

  • center-x和center-y分别是边界框中心的 x 和 y 坐标(以像素为单位),分别由图像宽度和高度归一化。

  • width和height分别是边界框的宽度和高度(以像素为单位),再次分别由图像宽度和高度归一化。

标注软件:

自动生成的类别信息:

自动生成的标签信息:

4、下载预训练模型

wget https://pjreddie.com/media/files/darknet53.conv.74

5、准备数据文件

在xxx.data文件中,设置好各个文件的路径信息

classes = 1
train  = /home/sxf/Desktop/yolov3/darknet/datasets/train.txt
valid  = /home/sxf/Desktop/yolov3/darknet/datasets/test.txt
names = /home/sxf/Desktop/yolov3/darknet/datasets/classes.names
backup = /home/sxf/Desktop/yolov3/darknet/datasets/weights/

6、YOLO参数配置

使用模型配置文件darknet-yolov3.cfg。

7、开始训练

./darknet detector train /home/sxf/Desktop/yolov3/darknet/datasets/darknet.data /home/sxf/Desktop/yolov3/darknet/datasets/darknet-yolov3.cfg ./darknet53.conv.74 > ./train.log

8、测试模型

python3 object_detection_yolo.py --image=image.jpg

OpenCV与YOLOv3的结合

Opencv4.0已经包含DNN相关的库函数,可以非常方便的调用训练好的YOLO3模型使用。OpenCV CPU 版本快9倍。

相关结合教程:

  • Opencv+YOLO3目标检测/C++ | Ryan's Blog

  • Deep Learning based Object Detection using YOLOv3 with OpenCV ( Python / C++ )

OpenCV的安装:

各平台安装OpenCV_小锋学长生活大爆炸的博客-CSDN博客

OpenCV教程合辑:

GitHub - spmallick/learnopencv: Learn OpenCV : C++ and Python Examples

YOLO可能的一些问题:

YOLO相关问题记录_小锋学长生活大爆炸的博客-CSDN博客

Ubuntu升级CMake3.22:

Ubuntu20.04升级CMake3.22(树莓派适用)_小锋学长生活大爆炸的博客-CSDN博客_树莓派更新cmake

权重与模型配置文件下载:

#!/bin/bash
wget "https://raw.githubusercontent.com/spmallick/learnopencv/master/ObjectDetection-YOLO/yolov3.cfg"
wget "https://pjreddie.com/media/files/yolov3.weights"
wget "https://raw.githubusercontent.com/spmallick/learnopencv/master/ObjectDetection-YOLO/coco.names"
wget "https://raw.githubusercontent.com/spmallick/learnopencv/master/ObjectDetection-YOLO/run.mp4"

赋予权限并执行

sudo chmod +x download.sh 
./download.sh

编写C++代码

#include 
#include 
#include 
#include 
#include 
#include 

using namespace cv;
using namespace std;
using namespace dnn;

vector classes;//储存名字的容器
float confThreshold = 0.5;//置信度阈值
float nmsThreshold = 0.4;//非最大抑制阈值
int inpWidth = 416;//网络输入图片宽度
int inpHeight = 416;//网络输入图片高度
//移除低置信度边界框
void postprocess(cv::Mat& frame,const vector& out);
//画出预测边界框
void drawPred(int classId,float conf,int left,int top,int right,int bottom,cv::Mat& frame);
//取得输出层的名字
vector getOutputNames(const cv::dnn::Net& net);

int main() {
    string device = "cpu";
    string bastPath = "/home/sxf/Desktop/yolov3/project/";

    //将类名存进容器
    string classesFile = bastPath+"model/coco.names";//coco.names包含80种不同的类名
    ifstream ifs(classesFile.c_str());
    string line;
    while(getline(ifs,line)) classes.push_back(line);

    //取得模型的配置和权重文件
    cv::String modelConfiguration = bastPath+"model/yolov3.cfg";
    cv::String modelWeights = bastPath+"model/yolov3.weights";

    //加载网络
    cv::dnn::Net net = cv::dnn::readNetFromDarknet(modelConfiguration, modelWeights);
    if (device == "cpu")
    {
        cout << "Using CPU device" << endl;
        net.setPreferableBackend(cv::dnn::DNN_BACKEND_OPENCV);
        net.setPreferableBackend(cv::dnn::DNN_TARGET_CPU);
    }
    else if (device == "gpu")
    {
        cout << "Using GPU device" << endl;
        net.setPreferableBackend(cv::dnn::DNN_BACKEND_CUDA);
        net.setPreferableTarget(cv::dnn::DNN_TARGET_CUDA);
    }


    //打开视频文件或者图形文件或者相机数据流
    cv::VideoCapture cap(bastPath+"model/run.mp4");
    //开启摄像头
    //cv::VideoCapture cap(1);
    cv::VideoWriter video;
    string str, outputFile;
    cv::Mat frame, blob;

    //创建窗口
    static const string kWinName = "Deep learning object detection in OpenCV";
    cv::namedWindow(kWinName,cv::WINDOW_AUTOSIZE);

    //处理每帧
    while(cv::waitKey(1)<0){
        //取每帧图像
        cap>>frame;
        //如果视频播放完则停止程序
        if(frame.empty()){
            break;
        }
        //在dnn中从磁盘加载图片
        cv::dnn::blobFromImage(frame,blob,1/255.0,cv::Size(inpWidth,inpHeight));
        //设置输入网络
        net.setInput(blob);
        //设置输出层
        vector outs;//储存识别结果
        net.forward(outs,getOutputNames(net));
        //移除低置信度边界框
        postprocess(frame,outs);
        //显示s延时信息并绘制
        vector layersTimes;
        double freq = cv::getTickFrequency()/1000;
        double t = net.getPerfProfile(layersTimes)/freq;
        string label = cv::format("Infercence time for a frame:%.2f ms",t);
        cv::putText(frame,label,cv::Point(0,15),cv::FONT_HERSHEY_SIMPLEX,0.5,cv::Scalar(0,255,255));
        //绘制识别框
        cv::Mat detecteFrame;
        frame.convertTo(detecteFrame,CV_8U);
        cv::imshow(kWinName,frame);
    }
    cap.release();

    return 0;
}

//移除低置信度边界框
void postprocess(cv::Mat& frame,const vector& outs){
    vector classIds;//储存识别类的索引
    vector confidences;//储存置信度
    vector boxes;//储存边框

    for(size_t i=0;iconfThreshold){
                int centerX = (int)(data[0]*frame.cols);
                int centerY = (int)(data[1]*frame.rows);
                int width = (int)(data[2]*frame.cols);
                int height = (int)(data[3]*frame.rows);
                int left = centerX-width/2;
                int top = centerY-height/2;

                classIds.push_back(classIdPoint.x);
                confidences.push_back((float)confidence);
                boxes.push_back(cv::Rect(left, top, width, height));
            }

        }

    }

    //低置信度
    vector indices;//保存没有重叠边框的索引
    //该函数用于抑制重叠边框
    cv::dnn::NMSBoxes(boxes,confidences,confThreshold,nmsThreshold,indices);
    for(size_t i=0;i getOutputNames(const cv::dnn::Net& net){
    static vector names;
    if(names.empty()){
        //取得输出层指标
        vector outLayers = net.getUnconnectedOutLayers();
        vector layersNames = net.getLayerNames();
        //取得输出层名字
        names.resize(outLayers.size());
        for(size_t i =0;i

CMakeLists文件可参考为:

cmake_minimum_required(VERSION 3.22)
project(project)

set(CMAKE_CXX_STANDARD 17)

find_package(OpenCV REQUIRED)
find_package(Doxygen)

if (NOT APPLE)
    find_package(OpenMP)
endif ()

# ============================================================================ #
# Compilation flags
IF(UNIX)
    SET(CMAKE_C_FLAGS_DEBUG "${CMAKE_C_FLAGS} -g -O0  -Wall -Wextra -Wunused-variable -DDEBUG -D_DEBUG")
    SET(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS} -O0 -g  -Wall -Wextra -Wunused-variable -DDEBUG -D_DEBUG")
ENDIF(UNIX)

if(OPENMP_FOUND)
    MESSAGE("OpenMP found")
    if(UNIX)
        SET(CMAKE_C_FLAGS_RELEASE "-O3  -Wall -Wextra -Wunused-variable  -g -fPIC -msse2 -msse3 -msse4 -ffast-math")
        SET(CMAKE_CXX_FLAGS_RELEASE "-O3 -Wall -Wextra -Wunused-variable -g -fPIC -msse2 -msse3 -msse4 -ffast-math")
    endif(UNIX)
    SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${OpenMP_CXX_FLAGS}")
    SET(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${OpenMP_C_FLAGS}")
else(OPENMP_FOUND)
    MESSAGE("OpenMP not found")
    if(UNIX)
        SET(CMAKE_C_FLAGS_RELEASE "${CMAKE_C_FLAGS} -O3 -Wall -std=c++0x -Wunused-variable -Wno-unknown-pragmas -g -fPIC -msse2 -msse3 -msse4 -ffast-math")
        SET(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS} -O3 -Wall -std=c++0x -Wno-unknown-pragmas -Wunused-variable -g -fPIC -msse2 -msse3 -msse4 -ffast-math")
    endif(UNIX)
endif(OPENMP_FOUND)

# ============================================================================ #
include_directories( ${OpenCV_INCLUDE_DIRS})


add_executable(project main.cpp)
target_link_libraries(project ${OpenCV_LIBS})

# ============================================================================ #
# Generate Doxygen-based documentation project
if(DOXYGEN_FOUND)
    add_custom_target(akaze_documentation
            ${DOXYGEN_EXECUTABLE} ${CMAKE_CURRENT_SOURCE_DIR}/Doxyfile
            WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
            COMMENT "Generating API documentation with Doxygen" VERBATIM)
endif(DOXYGEN_FOUND)

效果

在此如下配置的电脑上:

YOLOv3:

YOLOv3-tiny:

其他YOLOv3_C++使用方法 别人的开源代码

Github链接:GitHub - zqfang/YOLOv3_CPP: YOLOv3 C++


待续... ...

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/676128.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-04-19
下一篇 2022-04-19

发表评论

登录后才能评论

评论列表(0条)