详解K路归并排序(实战)

详解K路归并排序(实战),第1张

详解K路归并排序(实战) 引入:

其实K路归并排序的用处还是很广的,最简单的,假设你要排序海量的数据,比如TB级别的数据(我们姑且说是TB级别的搜索关键字),但是我们的内存只有GB级别,我们没办法一次把所有的数据全部载入然后排序,但是我们的确最终要结果,那么怎么办呢?K路归并排序闪亮登场 ,其实这就是一个“分而治之”的思想,既然我们要排Q个数,但是我们不能一次头全部排序完毕,这时候,我们把Q分为k组,每组n 个数,(k<n)并且假定这里的n个数据的排序在我们内存的容忍范围内,首先我们分别对于每组进行排序,这样得到了k个已经有序的数组(假设升序),那么我们最终只要吧这个k组数归并,这样得到的最后结果集就是已经排序了的结果集。

分析:

(1)如何合并k个已经排序了的数组呢?

因为我们以前讨论过堆,显然堆的排序效率是非常高的,所以我们自然也考虑到用堆来实现,因为要升序排列,所以我们创建一个最小堆。因为最终排序结果的数总是小的在前面大的在后面,所以我们考虑先把所有的n个数组的第一个元素(最小数)都放入最小堆中,所以最小堆的大小为k。这样我们调整堆结构,那么它的第一个元素就是min( min(array1),min(array2)....min(arrayn))显然就是所有数中的最小元素。

(2)因为在任意数组中都是按照升序排列的,所以我们一旦从堆中删除了一个最小元素,就必须找一个元素来填这个坑。为此,我们需要找到删除元素所在的数组中的下一个元素然后将其填入堆。(这个有点像是吧全国的最精英的士兵都拉去精英团打仗,那么就是每个团的最强的都拉来,如果这个人不幸战死,那么从同团中找出仅次于它的继续顶这个精英团,这样永远保持精英团的战斗力最高) 所以,如何去根据被删除的堆元素找这个被删除的堆元素所在的数组呢?这就需要在我们新建一个复合类型,它既包括当前的值,也包含这个当前值所在的数组的id,

(3)因为每个排序了的数组,随着最小的元素的不断流失,它还没有参与排序的值是渐渐变少的,所以我们必须维护一个长度为k的数组,这个数组保留了每个数组中还没参与排序的当前位置。并且一旦这个数组中剩余的最小元素被添加到了堆,那么这个当前位置必须后移。

(4)随着每个数组的当前位置后移,总归最后会达到这个数组的末端,这时候,这个数组就不能再提供任何数了,(这个很正常,比如部队中有一个尖刀连,它包含了最杰出的人,那么最后选到精英团时,总从这个连队选,然后这个连队一定最后没人了) ,所以我们就无法从当前删除的数所在数组中找到下一个值了,这时候我们就必须选择下一个有值的数组id,并且挑选出其最小值,方法是arrayIdForDeletedData = (arrayIdForDeletedData + 1) % k 。

(5)最后总有所有的数组位置都到了末端,也就是所有数组都不能提供未参与排序的值,所以这时候我们就要判断当前的堆是否为空,如果不为空,那么他们就包含了n*k中的最大的几个数了,我们依次deleteMin()来吧最大的几个数按照最小顺序输出。如果当前的堆已经为空,那么直接跳出循环。

所以最终时间复杂仅为 O(n*logk)

代码:

想清楚了上述几个关键技术细节,这里代码就很好写了。

首先,我们定义一个值对象,它封装了某个整数以及这个整数来自于哪个数组.

package com.charles.algo.kwaymerge;
/**
 *
 * 这个对象表明是一个可以跟踪来自于哪个数组的数据对象
 * @author charles.wang
 *
 */
public class TrackableData { 
    //data表明具体的值
    private int data;
    //comeFromArray表明这个值来自于哪一个数组
    private int comeFromArray;
 
    public TrackableData(int data,int comeFromArray){
        this.data = data;
        this.comeFromArray=comeFromArray;
    }
 
    public int getData() {
        return data;
    }
    public void setData(int data) {
        this.data = data;
    }
    public int getComeFromArray() {
        return comeFromArray;
    }
    public void setComeFromArray(int comeFromArray) {
        this.comeFromArray = comeFromArray;
    }
}

然后我们定义一个最小堆,它是解决问题的关键,需要注意的是,它包含的元素应该是上述的值对象,当入堆,调整堆,基于的计算都是值对象的data字段。

package com.charles.algo.kwaymerge;
/**
 * @author charles.wang
 *
 */
public class MinHeap {
    // 最小堆的存储是一个数组,并且为了计算,我们第一个位置不放内容
    private TrackableData[] data;
    // 堆的大小
    private int heapSize;
    // 当前元素的数量
    private int currentSize;
    public MinHeap(int maxSize) {
        heapSize = maxSize;
        // 创建一个比最大容纳数量多1的数组的作用是启用掉数组的头元素,为了方便运算,因为从1开始的运算更加好算
        data = new TrackableData[heapSize + 1];
        currentSize = 0;
    }
    /**
     * 返回当前的堆是否为空
     * @return
     */
    public boolean isEmpty(){  
        if(currentSize==0)
            return true;
        return false;
    }
    /**
     * 这里考察堆的插入,因为最小堆内部结构中数组前面元素总是按照最小堆已经构建好的,所以我们总从尾部插入 解决方法是: Step
     * 1:先把当前的元素插入到数组的尾部 Step 2:递归的比较当前元素和父亲节点元素, Step
     * 3:如果当前的元素小于父亲节点的元素,那么就把当前的元素上移,直到移不动为止
     *
     * @param value
     * @return
     */
    public MinHeap insert(TrackableData value) {
        // 首先判断堆是否满了,如果满了就无法插入
        if (currentSize == heapSize)
            return this;
        // 如果堆还没有满,那么说明堆中还有位置可以插入,我们先找到最后一个可以插入的位置
        // currentPos表示当前要插入的位置的数组下标
        int currentPos = currentSize + 1;
        // 先插入到当前的位置,因为是从1开始的,所以数组下标运算也要+1
        data[currentPos] = value;
        // 然后比较当前元素和他的父亲元素
        // 当前元素是data[currentPos] ,父亲元素是 data[(currentPos/2],一直遍历到根
        TrackableData temp;
        // 如果currentPos为1,表明是插入的堆中第一个元素,则不用比较
        // 否则, 如果插了不止一个元素,则用插入位置的元素和其父元素比较
        while (currentPos > 1) {
            // 如果当前元素小于父亲元素,那么交换他们位置
            if (data[currentPos].getData() < data[currentPos / 2].getData()) {
                temp = data[currentPos / 2];
                data[currentPos / 2] = data[currentPos];
                data[currentPos] = temp;
                // 更新当前位置
                currentPos = currentPos / 2;
            }
            // 否则, 在假定已有的堆是最小堆的情况下,说明现在插入的位置是正确的,不用变换
            else {
                break;
            }
        }
        // 插入完毕之后,吧当前的堆中元素的个数加1
        currentSize++;
        return this;
    }
    /**
     * 这里考察堆的删除 因为是最小堆,所以肯定删除最小值就是删除堆的根元素,此外,还必须要调整剩余的堆使其仍然保持一个最小堆
     * 因为有删除最小元素之后最小元素位置就有了个空位,所以解决方法是: Step 1:吧堆中最后一个元素复制给这个空位 Step
     * 2:依次比较这个最后元素值,当前位置的左右子元素的值,从而下调到一个合适的位置 Step 3:从堆数组中移除最后那个元素
     */
    public TrackableData deleteMin() {
        // 如果最小堆已经为空,那么无法删除最小元素
        if (currentSize == 0)
            return null;
        // 否则堆不为空,那么最小元素总是堆中的第一个元素
        TrackableData minValue = data[1];
        // 既然删除了最小元素,那么堆中currentSize的尺寸就要-1,为此,我们必须为数组中最后一个元素找到合适的新位置
        // 堆中最后一个元素
        TrackableData lastValue = data[currentSize];
        // 先将堆中最后一个元素移动到最小堆的堆首
        data[1] = lastValue;
        // 把堆内部存储数组的最后一个元素清0
        data[currentSize] = null;
        // 并且当前的堆的尺寸要-1
        currentSize--;
        // 现在开始调整堆结构使其仍然为一个最小堆
        int currentPos = 1; // 当前位置设置为根,从根开始比较左右
        int leftPos = currentPos * 2;
        TrackableData leftValue;
        TrackableData rightValue;
        TrackableData temp;
        // 如果左位置和当前堆的总容量相同,说明只有2个元素了,一个是根元素,一个是根的左元素
        if (leftPos == currentSize) {
            // 这时候如果根左元素data[2]比根元素data[1]小,那么就交换二者位置
            if (data[2].getData() < data[1].getData()) {
                temp = data[2];
                data[2] = data[1];
                data[1] = temp;
            }
        }
        else {
            // 保持循环的条件是该节点的左位置小于当前堆中元素个数,那么该节点必定还有右子元素并且位置是左子元素位置+1
            while (leftPos < currentSize) {
                // 获取当前位置的左子节点的值
                leftValue = data[leftPos];
                // 获取当期那位置的右子节点的值
                rightValue = data[leftPos + 1];
                // 如果当前值既小于左子节点又小于右子节点,那么则说明当前值位置是正确的
                if (data[currentPos].getData() < leftValue.getData()
                        && data[currentPos].getData() < rightValue.getData()) {
                    break;
                }
                // 否则,比较左子节点和右子节点
                // 如果左子节点小于右子节点(当然了,同时小于当前节点),那么左子节点和当前节点互换位置
                else if (leftValue.getData() < rightValue.getData()) {
                    temp = data[currentPos];
                    data[currentPos] = leftValue;
                    data[leftPos] = temp;
                    // 同时更新当前位置是左子节点的位置,并且新的左子节点的位置为左子节点的左子节点
                    currentPos = leftPos;
                    leftPos = currentPos * 2;
                }
                // 如果右子节点小于左子节点(当然了,同时小于当前节点),那么右边子节点和当前节点互换位置
                else {
                    temp = data[currentPos];
                    data[currentPos] = rightValue;
                    data[leftPos + 1] = temp;
                    // 同时更新当前位置是右子节点的位置,并且新的左子节点的位置为右子节点的左子节点
                    currentPos = leftPos + 1;
                    leftPos = currentPos * 2;
                }
            }
        }
        return minValue;
    }
}

最后,我们来实现K路合并器,还是挺好实现的,不过涉及到一些下标运算必须特别小心。因为我们要通用,所以k和n都是传进来的,实际上,我们如果事先规划好k和n之后,完全不用在内部维护这些数,因为只要吧他们存入最小堆就行了。

package com.charles.algo.kwaymerge;
import java.util.ArrayList;
import java.util.List;
/**
 *
 * 这个类用于演示K路合并
 *
 * @author charles.wang
 *
 */
public class KWayMerger {
    private KWayMerger() {
    }
    /**
     * k路合并,这里的指导思想如下:
     *
     * (1)首先构造一个最小堆,其中堆中的元素初始值为每个数组中的最小元素
     * (2)每次从最小堆中打印并且删除最小元素,然后把这个最小元素所在的数组中的下一个元素插入到最小堆中 (3)每次(2)结束后调整堆来维持这个最小堆
     */
    public static void mergeKWay(int k, int n, List<int[]> arrays) {
        // 这里存储了所有每个数组的当前的下标,在没有开始插入之前,每个数组的当前下标都设为0
        int[] indexInArrays = new int[k];
        for (int i = 0; i < k; i++) {
            indexInArrays[i] = 0;
        }
        // 首先构造一个最小堆,其大小为k
        MinHeap minHeap = new MinHeap(k);
        // 第一步,依次吧每个数组中的第一个元素都插入到最小堆
        // 然后把所有数组的下标都指向1
        for (int i = 0; i < k; i++) {
            // 这里每个都构造TrackableData对象:
            // 其中:arrays.get(i)[0]表示它值为第i个数组的下标为0的元素(也就是第i个数组的第一个元素)
            // i表示这个对象来自于第i个数组
            minHeap.insert(new TrackableData(arrays.get(i)[0], i));
            indexInArrays[i] = 1;
        }
        // 第二步,对最小堆进行反复的插入删除动作
        TrackableData currentDeletedData;
        TrackableData currentInsertedData;
        int arrayIdForDeletedData;
        int nextValueIndexInArray;
        // 循环的条件是k个数组中至少有一个还有值没有被插入到minHeap中
        while (true) {
            // 这个变量维护了有多少个数组当前下标已经越界,也就是数组所有元素已经被完全处理过
            int noOfArraysThatCompletelyHandled = 0;
            // 就是去查询维护所有数组当前下标的数组,如果都越界了,那么就说明都比较过了
            for (int i = 0; i < k; i++) {
                if (indexInArrays[i] == n)
                    noOfArraysThatCompletelyHandled++;
            }
            // 如果所有的数组中的所有的值都比较过了,那么查看堆中内容是否为空。
            if (noOfArraysThatCompletelyHandled == k) {
                while (!minHeap.isEmpty()) {
                    currentDeletedData = minHeap.deleteMin();
                    // 打印出当前的数
                    System.out.print(currentDeletedData.getData() + " ");
                }
                break;
            }
            currentDeletedData = minHeap.deleteMin();
            // 打印出当前的数
            System.out.print(currentDeletedData.getData() + " ");
            // 获取当前的被删的数来自于第几个数组
            arrayIdForDeletedData = currentDeletedData.getComeFromArray();
            // 获取那个数组的当前下标
            nextValueIndexInArray = indexInArrays[arrayIdForDeletedData];
            // 如果当前下标没有越界,说明当前数组中还有元素,则找到该数组中的下个元素
            if (nextValueIndexInArray < n) {
                // 构造新的TrackableData,并且插入到最小堆
                currentInsertedData = new TrackableData(
                        arrays.get(arrayIdForDeletedData)[nextValueIndexInArray],
                        arrayIdForDeletedData);
                minHeap.insert(currentInsertedData);
                // 同时更新维护数组当前下标的数组,让对应数组的当前下标+1
                indexInArrays[arrayIdForDeletedData]++;
            }
            // 如果当前下标已经越界,说明这个数组已经没有任何元素了,则找下一个有值的数组的最小元素
            else {
                while (true) {
                    arrayIdForDeletedData = (arrayIdForDeletedData + 1) % k;
                    // 获取那个数组的当前下标
                    nextValueIndexInArray = indexInArrays[arrayIdForDeletedData];
                    if (nextValueIndexInArray == n)
                        continue;
                    else {
                        // 构造新的TrackableData,并且插入到最小堆
                        currentInsertedData = new TrackableData(
                                arrays.get(arrayIdForDeletedData)[nextValueIndexInArray],
                                arrayIdForDeletedData);
                        minHeap.insert(currentInsertedData);
                        // 同时更新维护数组当前下标的数组,让对应数组的当前下标+1
                        indexInArrays[arrayIdForDeletedData]++;
                        break;
                    }
                }
            }
        }
    }
                          
}

实验:

最后我们来演示下,假设我们有32个数,我们分为4路合并,每路8个数,并且这8个数是已经排序的。

然后我们用K路合并算法来对所有的32个数进行排序:

public static void main(String[] args) {
        // 我们来演示K路合并,假设我们有4组已经排序了的数组,每组有8个数,则n=8,k=4
        int[] array1 = { 4, 5, 7, 8, 66, 69, 72, 79 };
        int[] array2 = { 3, 9, 42, 52, 53, 79, 82, 87 };
        int[] array3 = { 1, 17, 21, 31, 47, 55, 67, 95 };
        int[] array4 = { 6, 28, 49, 55, 68, 75, 83, 94 };
                                                       
        System.out.println("这里演示K路合并,其中每个数组都事先被排序了,并且长度为8,我们分4路合并");
        System.out.println("数组1为:");
        for(int i=0;i<array1.length;i++)
            System.out.print(array1[i]+" ");
        System.out.println();
                                                       
        System.out.println("数组2为:");
        for(int i=0;i<array2.length;i++)
            System.out.print(array2[i]+" ");
        System.out.println();
                                                       
        System.out.println("数组3为:");
        for(int i=0;i<array3.length;i++)
            System.out.print(array3[i]+" ");
        System.out.println();
                                                       
        System.out.println("数组4为:");
        for(int i=0;i<array4.length;i++)
            System.out.print(array4[i]+" ");
        System.out.println();
        List<int[]> arrayLists = new ArrayList<int[]>(4);
        arrayLists.add(0, array1);
        arrayLists.add(1, array2);
        arrayLists.add(2, array3);
        arrayLists.add(3, array4);
        KWayMerger kWayMerger = new KWayMerger(4, 8, arrayLists);
                                                       
        System.out.println("排序后,结果为:");
        kWayMerger.mergeKWay();
        System.out.println();
    }

最后运行结果为:

显然结果是正确的,而且我们的方法是支持重复的值的。

以上就是详解K路归并排序(实战)的详细内容,

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/686769.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-04-21
下一篇 2022-04-21

发表评论

登录后才能评论

评论列表(0条)

保存