Spark流处理日志+SSM前端展示(详细)

Spark流处理日志+SSM前端展示(详细),第1张

目录

1.前言

2.实战内容

3.实战框架

4.项目实战

1.环境搭建:

 2.后端开发

1.在PyCharm创建python脚本,生成随机日志

2.SparkStreaming数据的初步清洗

 3.统计课程点击量和搜索引擎的访问量

4.检验步骤

 5.注意事项

3.前端开发(IDEA专业版)

创建工程文件搭建SSM框架

1.配置mapper和pojo目录文件

2.util配置

3.配置dao层和service层代码

4.resources配置

5.配置controller

6.配置webapp

7.配置tomcat服务器

 5.效果展示


1.前言

最近在学习Spark Streaming,对流数据日志处理有了一些了解,加上学校近期开展了SSM框架的课程。一上头,就想把这东西给整和一下,源码我整合在Gitee上了,可自行取。

此项属于对前后端+Spark数据处理的一个整合,难度并不大,属于对Spark学习的横向扩展,适用于Spark Streaming的初学者。

考虑篇幅过长,先上源码:Spark流处理日志

2.实战内容
  1. python编写脚本定时生成伪随机日志
  2. SparkStream获取数据,将数据清洗过滤非法数据,然后分析日志中用户的访问量,统计访问课程数;访问搜索引擎,统计不同搜索引擎的点击量
    • 将Spark Streaming处理的结果初步存入Mysql(可以缓存到Hbase中,取数可以更快)
    • Spark获取Mysql数据,统计课程和搜索引擎的点击量,存入Mysql
  3. 前端使用Spring, Spring Mvc, MyBatis展示数据
  4. 考虑到图像运用Echarts,所以使用Ajax异步传输数据给jsp

Spark工作流程图如下: 

 

3.实战框架

实战工具:Intellij IDEA2021专业版( 因为社区版没有Tomcat,也没有具体试验过插件Smart Tomcat,其他功能社区版均能实现 ), PyCharm社区版,JDK版本1.8,Scala版本2.13

架构和涉及的技术栈:

  • Python-3.9
  • Spark-3.2.1
  • Mybatis-3.5.9
  • Spring Mvc-5.3.16
  • Spring-5.3.16
  • Echarts

4.项目实战

注意:本项目将Scala和Java板块合并在同一个工程中,所以只需要创建一个工程即可

1.环境搭建:

1)创建Maven工程,引入依赖pom.xml(源文件是完整的):


    
        
            mysql
            mysql-connector-java
            ${mysql.version}
        


        
            org.mybatis
            mybatis
            ${mybatis.version}
        

        
        
            org.mybatis
            mybatis-spring
            2.0.7
        

        
        
            commons-logging
            commons-logging
            1.2
        


        
        
            org.springframework
            spring-expression
            ${spring.version}
        

        
            org.springframework
            spring-context-support
            ${spring.version}
        

        
            org.springframework
            spring-jdbc
            ${spring.version}
        

        
            org.springframework
            spring-webmvc
            ${spring_mvc.vserion}
        

        
        
            org.springframework
            spring-core
            ${spring.version}
        

        
        
            org.springframework
            spring-context
            ${spring.version}
        

        
            net.sf.json-lib
            json-lib
            2.4
            jdk15
        

        
            com.fasterxml.jackson.core
            jackson-databind
            2.12.2
        

        
        
            org.apache.spark
            spark-core_2.13
            ${spark.version}
        

        
        
            junit
            junit
            4.13.2
            test
        

        
        
            org.scala-lang
            scala-library
            2.13.8
        

        
        
            org.apache.spark
            spark-sql_2.13
            ${spark.version}
        

        
        
            org.apache.spark
            spark-streaming_2.13
            ${spark.version}
        

    

2)下载Scala插件,再右键项目名添加框架支持,导入Scala模块

 2.后端开发 1.在PyCharm创建python脚本,生成随机日志

一次脚本的完整运行,将会一次性产生2000条日志,以追加的方式平摊在文档中。根据脚本的编码,产生一条正确完整的Web日志的概率仅为20%,即一次运行,只有400条左右的日志会存入数据库中,详情可查看步骤2)

import random
import time

#  创建url访问数组class
url_paths = [
    "class/112.html",
    "class/128.html",
    "class/145.html",
    "class/146.html",
    "class/500.html",
    "class/250.html",
    "class/131.html",
    "learn/821",
    "learn/823",
    "learn/987",
    "learn/500",
    "course/list"
]

#  创建ip数组,随机选择4个数字作为ip如132.168.30.87
ip_slices = [132, 156, 124, 10, 29, 167, 143, 187, 30, 46, 55, 63, 72, 87, 98, 168, 192, 134, 111, 54, 64, 110, 43, 127, 12, 53, 99]

#  搜索引擎访问数组
# {query}
# 代表搜索关键字
http_referers = [
    "http://www.baidu.com/s?wd={query}",
    "https://www.sogou.com/web?query={query}",
    "http://cn.bing.com/search?q={query}",
    "https://search.yahoo.com/search?p={query}",
]

#  搜索关键字数组
search_keyword = [
    "Spark SQL",
    "Hadoop",
    "Storm",
    "Spark Streaming",
    "10 HoursCrash",
    "Blink",
    "SpringBoot",
    "Linux",
    "Vue.js",
    "Hive",
    "Flink",
]

#  状态码数组
status_codes = ["200", "504", "404", "403"]


#  随机选择一个url
def sample_url():
    return random.sample(url_paths, 1)[0]


#  随机组合一个ip
def sample_ip():
    slice = random.sample(ip_slices, 4)
    return ".".join([str(item) for item in slice])


#  随机产生一个搜索url
def sample_referer():
    # // 0.2的概率会产生非法url,用于模拟非法的用户日志
    if random.uniform(0, 1) > 0.8:
        return "-"

    refer_str = random.sample(http_referers, 1)
    query_str = random.sample(search_keyword, 1)
    return refer_str[0].format(query=query_str[0])


#  随机产生一个数组
def sample_status_code():
    return random.sample(status_codes, 1)[0]


def generate_log(count=10, index=10):
    # 获取本机时间并将其作为访问时间写进访问日志中
    time_str = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
    indexes = str(index)
    file = "./data/OfflineWareHouse/随即日志生成器" + indexes + ".log"
    # 存储日志的目标文件(换成你自己的) w覆盖 a追加
    f = open(file, "a")

    # 组合用户日志
    while count >= 1:
        query_log = "{ip}\t{local_time}\t\"GET /{url} HTTP/1.1\"\t{status_code}\t{referer}".format(url=sample_url(),
                                                                                                   ip=sample_ip(),
                                                                                                   referer=sample_referer(),
                                                                                                   status_code=sample_status_code(),
                                                                                                   local_time=time_str)
        f.write(query_log + "\n")

        count = count - 1
    f.close()


# 执行main,每次产生100*20条用户日志
counts = 20
while counts:
    sleepTime = random.randint(6, 12)
    time.sleep(sleepTime)
    print("第%d个Web日志新增%d条数据" % (counts, 100))
    generate_log(100, counts)
    counts = counts - 1
2.SparkStreaming数据的初步清洗

Spark Streaming可整合多种输入数据源,如Kafka,Flume,HDFS,甚至是普通的TCP套接字流,本次是对本地模式中的固定目录进行监听,一旦发现有新的文件内容生成,Spark Streaming就会自动把文件内容读取出来,使用自定义的处理逻辑处理.

①.在主函数创建对应的工程包scala并标记为"源目录":

②.在数据清洗前,需要了解Web日志的规格设置,本日志数据与数据之间是通过"\t"也就是Tab键位分隔开的,下面是一条常规的Web日志,其规格如下,我们需要将method和url拆开,获取单独的GET,yahoo,Spark Streaming字段

userIp = 168.46.55.10
local_time = 2022-04-03 19:03:52
method = "GET /class/146.html HTTP/1.1"	
status = 404	
url = https://search.yahoo.com/search?p=Spark Streaming

 ③.Spark Streaming的代码如下:

SparkStreaming的数据抽象为DStream,不同的数据抽象有不同的函数方法,为了完成需求,、整个日志的RDD格式走向为DStream[String]->RDD[String]->DataFrame

package ssm

import org.apache.spark.sql.{SQLContext}
import java.util.Properties
import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}


object WareHouseStreaming {
  def main(args:Array[String]): Unit ={
    val sparkConf = new SparkConf().setAppName("WareHouseStreaming").setMaster("local")
    val prop = new Properties()
    prop.put("user", "root")
    prop.put("password", "******")
    prop.put("driver","com.mysql.jdbc.Driver")
    val scc = new StreamingContext(sparkConf, Seconds(10))

    val file = "file:///C:/Users/Lenovo/Desktop/Working/Python/data/OfflineWareHouse/"
    val lineDStream = scc.textFileStream(file)

    val lines = lineDStream.flatMap(_.split("\n"))
    val line = lines.map(_.replaceAll("\"","")).map(_.split("\t"))
    line.foreachRDD(rdd=>{
      val sqlContext = SQLContext.getOrCreate(rdd.sparkContext)
      import sqlContext.implicits._
      rdd
        .map(x=>(x(0).trim,x(1).trim,x(2).trim,x(3).trim,x(4).trim))
        .toDF("userIp","local_time","method","status","url")
        .registerTempTable("speedtable")
      val dataFrame = sqlContext.sql("select * from  speedtable ")
      //dataFrame.show(5)
      //println(dataFrame.count())

      //过滤状态码非200字段,过滤非法url字段
      //状态码为200的概率为1/4,产生合法url字段的概率为4/5,即一条正确的日志概率为1/5
      val d1 = dataFrame
        .filter(x => x(3) == "200")
        .filter(x => x(4) != "-")

      val dfDetail = d1.map( row =>{
        val methods = row.getAs[String]("method").split(" ")
        val urls = row.getAs[String]("url").split("\\?")
        val SE = urls(0)
        val names = urls(1)
          .split("=")
        val name = names(1)
        var map = Map("params" -> "null")
        val method = methods(0)
        val url = methods(1)
        val agreement = methods(2)
        (
          row.getAs[String]("userIp"),
          row.getAs[String]("local_time"),
          map.getOrElse("method",method),
          map.getOrElse("url",url),
          map.getOrElse("agreement",agreement),
          row.getAs[String]("status"),
          map.getOrElse("SE",SE),
          map.getOrElse("name",name)
        )
      }).toDF("userIp","local_time","method","url","agreement","status","SE","name")
      dfDetail.show(5)

      val url = "jdbc:mysql://localhost:3306/python_db"
      println("开始写入数据库")
      dfDetail.write.mode("Append").jdbc(url,"warehouse",prop)
      println("完成写入数据库,新增"+dfDetail.count()+"条数据")
    })

    scc.start()
    scc.awaitTermination()
  }
}
 3.统计课程点击量和搜索引擎的访问量

相比较采用流数据处理问题,采用离线数据处理问题的方式简单快捷,程序可以独立运行,方便维护,缺点是计算量比流式计算模式大得多,因为会重复计算数据。但前端页面的刷新时间为10s,数据的时效性并不明显,10s对离线计算时间足以

课程点击量代码:

package ssm


import org.apache.spark.sql.{Row, SparkSession}
import org.apache.spark.sql.types.{IntegerType, StringType, StructField, StructType}

import java.util.Properties

object NameCount {
  def main(args:Array[String]): Unit ={
    val prop = new Properties()
    prop.put("user", "root")
    prop.put("password", "******")
    prop.put("driver", "com.mysql.jdbc.Driver")
    val url = "jdbc:mysql://localhost:3306/python_db"
    while(true){
      Thread.sleep(10000)
      println("开始更新课程点击量")
      lessCount(prop,url)
    }
  }
  def lessCount(prop:Properties,url:String): Unit = {
    val spark = SparkSession.builder().appName("NameCount").master("local").getOrCreate()
    val sc = spark.sparkContext
/**
整体流程的数据类型为Mysql->
DataFrame->{ RDD[Row]->RDD[String] }
->replace归并课程类型
->RDD[String,Int]统计点击量
->RDD[Row(String,Integer)]
->DataFrame->Mysql
 */

    import spark.implicits._
    val dataFrame = spark.read.jdbc(url, "warehouse", prop).select("name")

//    DataFrame->{ RDD[Row]->RDD[String] }
    val dataRDD = dataFrame.rdd.map(x=>x.mkString(""))
//    dataRDD.foreach(println)

//    ->replace归并课程类型
    val word = dataRDD
      .map(_.replaceAll("10 HoursCrash","Hadoop"))
      .map(_.replaceAll("Spark Streaming","Spark"))
      .map(_.replaceAll("Hive","Hadoop"))
      .map(_.replaceAll("Spark SQL","Spark"))
      .map(_.replaceAll("Blink","Flink"))
    //word.foreach(println)

//    ->RDD[String,Int]统计点击量
    val wordCount = word.map((_,1))
      .reduceByKey(_+_)
      .sortBy(_._2,false)
    //wordCount.foreach(println)

//    ->RDD[Row(String,Integer)]
    val dF = wordCount.map(x=>{Row(x._1,x._2)})
    //dF.foreach(println)

//    ->DataFrame->Mysql
    val schema = StructType(Array(
      StructField("lesson",StringType),
      StructField("counts",IntegerType)
    ))
    val orgDF = spark.createDataFrame(dF, schema)
    orgDF.show()

    println("开始写入数据库")
    orgDF.write.mode("overwrite").jdbc(url,"lesson_counts",prop)
    println("完成写入数据库,因为报错会中断进程")
    sc.stop()
  }
}

 搜索引擎访问量统计代码如下:

package ssm


import org.apache.spark.sql.{Row, SparkSession}
import org.apache.spark.sql.types.{IntegerType, StringType, StructField, StructType}

import java.util.Properties

object UrlCount {
  def main(args:Array[String]): Unit ={
    val prop = new Properties()
    prop.put("user", "root")
    prop.put("password", "******")
    prop.put("driver", "com.mysql.jdbc.Driver")
    val url = "jdbc:mysql://localhost:3306/python_db"
    while(true) {
      Thread.sleep(10000)
      println("开始更新搜索点击量")
      SECounts(prop, url)
    }
  }
  def SECounts(prop:Properties,url:String): Unit ={
    val spark = SparkSession.builder().appName("urlCount").master("local").getOrCreate()
    val sc = spark.sparkContext

    val SEFrame = spark.read.jdbc(url, "warehouse", prop).select("SE")
//    dataFrame.show(5)

    val SERdd = SEFrame.rdd.map(_.mkString(""))

    val SE = SERdd
      .map(_.split("[.]"))
      .map(x=>x(1))
      .map(_.replaceAll("baidu","百度"))
      .map(_.replaceAll("sogou","搜狗"))
      .map(_.replaceAll("bing","必应"))
      .map(_.replaceAll("yahoo","雅虎"))

    val seCount = SE.map((_,1))
      .reduceByKey(_+_)
      .sortBy(_._1)
      .map(x=>{Row(x._1,x._2)})
    seCount.foreach(println)

    val schema = StructType(Array(
      StructField("Se",StringType),
      StructField("counts",IntegerType)
    ))
    val detailDF = spark.createDataFrame(seCount,schema)
    println("正在存入数据库")
    detailDF.write.mode("Overwrite").jdbc(url,"se_counts",prop)
    println("数据库存入完成")

    sc.stop()
  }
}
4.检验步骤

运行SparkStreaming代码挂后台

运行UrlCount和NameCount挂后台

运行Python脚本挂后台

前往Spark的窗口查看数据是否成功收集

Spark Streaming成功样例:

 NameCount成功样例:

 urlCount成功样例:

 5.注意事项:

①.Spark Streaming处理日志需要花费的时间最好不要超过一次检测(目前是10s)的时间,当Python一次性生成的数据量过大(目前是100)导致上述问题发生时,Spark的计算会出现严重问题,甚至可能会宕机。合理分配Spark检测时间和数据量很重要,这属于经验,具体要看后续其他业务的数据量的大小来调优。

---有一次作死,让python每5s产生1500条日志(总计一次3万),Spark检测时间也是5s,结果一次存入数据库的数据量也在3万上下(理论是6000)。后续发现当第一批数据读入还未计算完,第二批就进来了,结果就是第一批数据夹杂着第二批的数据一并存入数据库中,而当我意识到这个问题的时候,数据库中的数据量已经超过20多万了,我一气之下删库了.....

至此Spark Streaming的开发已经完成了

3.前端开发(IDEA专业版) 创建工程文件搭建SSM框架

1.配置mapper和pojo目录文件

工程文件显示如下,其中SE为搜索引擎的类,Lesson为课程点击量的类

Lesson.java (SE.java同理,可以直接去发的源码查看)

package cn.pojo;

public class Lesson {
    private String lesson = null;
    private Integer lesson_count = null;

    public String getLesson() {return lesson;}
    public void setLesson(String lesson) {this.lesson = lesson;}
    public Integer getLesson_count() {return lesson_count;}
    public void setLesson_count(Integer lesson_count) {this.lesson_count = lesson_count;}

    @Override
    public String toString() {
        return "Lesson{" +
                " lesson= " + lesson +
                " ,lesson_count= " + lesson_count +
                '}';
    }
}

接口LessonMapper.java (SEMapper.java同理)

package cn.mapper;

import org.apache.ibatis.annotations.Param;
import cn.pojo.Lesson;

import java.util.List;

public interface LessonMapper {
    Integer selectLessonCount(Lesson user);
    List selectAll();
}

 接口的实现LessonMapper.xml (SE同理)




    
    
    
        
        
    
    
2.util配置

在util下创建MybatisUtils.java用于Mybatis连接Mysql

package cn.util;

import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibatis.session.SqlSessionFactory;
import org.apache.ibatis.session.SqlSessionFactoryBuilder;

import java.io.IOException;
import java.io.InputStream;

public class MybatisUtils {
    private static SqlSessionFactory sqlSessionFactory;
    static {
        try {
            String resource = "mybatis-config.xml";
            InputStream inputStream = Resources.getResourceAsStream(resource);
            sqlSessionFactory = new SqlSessionFactoryBuilder().build(inputStream);
        } catch (IOException e) {
            e.printStackTrace();
        }
    }

    //获取SqlSession连接
    public static SqlSession getSession(){
        return sqlSessionFactory.openSession();
    }
}
3.配置dao层和service层代码

DAO层代码

 接口CourseClickDao.java (SE同理)

package cn.dao;

import cn.pojo.Lesson;

import java.util.List;

public interface CourseClickDao {
    List selectLessonAll(Lesson user);
}

接口CourseClickDao.java的实现CourseDaoImpl.java

package cn.dao.Impl;

import cn.dao.CourseClickDao;
import cn.pojo.Lesson;
import org.mybatis.spring.SqlSessionTemplate;

import java.util.List;

public class CourseDaoImpl implements CourseClickDao{
    public SqlSessionTemplate session;
    public SqlSessionTemplate getSession(){return session;}
    public void setSession(SqlSessionTemplate session){this.session = session;}

    @Override
    public List selectLessonAll(Lesson user){
        return session.selectList("cn.mapper.LessonMapper.selectAll");
    }
}
4.resources配置

Spring配置文件beans.xml



    
    
        
        
        
        
    

    
    
        
        
    


    
    
        
    

    
        
    
    
        
    


    
        
    
    
        
    


    

    


    
    

    
    
        
    

    
    
        
            
        
    

Spring MVC配置文件dispatcher.xml



    
    
    
    
    
    
    
        
        
    

Mybatis配置文件mybatis-config.xml




    
    
        
            
            
                
                
                
                
                
            
        
    

    
        
        
    


5.配置controller

配置MVC控制器CourseClickController.java如下(SearchClickController.java同理)

package cn.controller;

import cn.pojo.Lesson;
import cn.service.CourseClickService;
import net.sf.json.JSONArray;
import net.sf.json.JSONObject;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;
import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.bind.annotation.ResponseBody;

import java.util.List;

/**
 * 课程点击Controller
 */
@Controller("COURSECLICK")
@RequestMapping("/")
public class CourseClickController {

    //页面跳转
    @RequestMapping("/courseClick")
    public String toGetCourseClick(){
        return "courseClick";
    }

    /**
     *  sponseBody注解的作用是将controller的方法返回的对象通过适当的转换器转
     *  换为指定的格式之后,写入到response对象的body区,通常用来返回JSON数据或者是XML
     */
    @ResponseBody
    @RequestMapping(value = "/getCourseClickCount",method = RequestMethod.GET)
    public JSONArray courseClickCount(){
        JSONArray json = new JSONArray();

//       Lesson类有课程名name(String)和对应的人点击量count(int)
        ApplicationContext context = new ClassPathXmlApplicationContext(
                "beans.xml");
        CourseClickService service = (CourseClickService) context.getBean("clickService");
        Lesson use = (Lesson) context.getBean("Lesson");
        List lessons = service.selectLessonALlSer(use);
        for(Lesson les : lessons){
            JSONObject jo = new JSONObject();
            jo.put("name",les.getLesson());
            jo.put("count",les.getLesson_count());

            json.add(jo);
        }
//      list有多个课程名和对应的点击量
        //封装JSON数据
        return json;
    }
}
6.配置webapp

创建webapp,添加Web框架支持

 以上文件的代码如下:

1.WEB-INF文件代码如下

        web.xml




    
    
        contextConfigLocation
        classpath:dispatcher-servlet.xml
    

    
    
        org.springframework.web.context.ContextLoaderListener
    

    
    
        dispatcher
        org.springframework.web.servlet.DispatcherServlet
    

    
        dispatcher
        /
    

        courseClick.jsp

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ page contentType="text/html;charset=UTF-8" language="java" %>


    
    
    
    


    
    
>


2.js文件代码如下

        echarts和jquery源文件有,或者自行在官网下载

        getCourseClickData.js

function addScript(url){
    document.write("");
}
var scources = [];
var scources2 = [];
var scources3 = [];
var scources4 = [];
//获得url上参数date的值
function GetQueryString()
{
    var reg = new RegExp("(^|&)=([^&]*)(&|$)");
    var r = window.location.search.substr(1).match(reg);//search,查询?后面的参数,并匹配正则
    if(r!=null)return  unescape(r[2]); return null;
}
var date = GetQueryString();
$.ajax({
    type:"GET",
    url:"/getCourseClickCount",
    dataType:"json",
    async:false,
    success:function (result) {
        if(scources.length != 0){
            scources.clean();
            scources2.clean();
            scources3.clean();
            scources4.clean();
        }
        for(var i = 0; i < result.length; i++){//饼图外侧所有数据
            scources3.push({"value":result[i].count,"name":result[i].name});

        }
        for(var i = 0; i < 5; i++){//柱状图前五数据
            scources.push(result[i].name);
            scources2.push(result[i].count);
        }
        for(var i = 0; i < 3; i++){//内测饼图前三数据
            scources4.push({"value":result[i].count,"name":result[i].name});
        }
    }
})

// 基于准备好的dom,初始化echarts实例
var myChart = echarts.init(document.getElementById('main1'));

// 指定图表的配置项和数据
var option = {
    title: {
        text: '学习网实时实战课程访问量',
        subtext: '课程点击数',
        x:'center'
    },
    tooltip: {
        legend: {
            data: ['点击数']
        }
    },
    xAxis: {
        data: scources
    },
    yAxis: {},
    series: [{
        name: '点击数',
        type: 'bar',
        data: scources2
    }]
};
// 使用刚指定的配置项和数据显示图表。
myChart.setOption(option);

var myChart = echarts.init(document.getElementById('main2'));

// 指定图表的配置项和数据
var option = {
    title: {
        text: '学习网实时实战课程访问量',
        subtext: '课程点击数',
        x:'center'
    },
    tooltip: {
        trigger: 'item',
        formatter: "{a} 
{b}: {c} ({d}%)" }, legend: { type: 'scroll', orient: 'vertical', right: 50, top: 20, data: scources }, series: [ { name: 'Access From', type: 'pie', selectedMode: 'single', radius: [0, '30%'], label: { position: 'inner', fontSize: 20 }, labelLine: { show: false }, data: scources4 }, { name: 'Access From', type: 'pie', radius: ['40%', '55%'], labelLine: { length: 30 }, label: { formatter: '{a|{a}}{abg|}\n{hr|}\n {b|{b} :}{c} {per|{d}%} ', backgroundColor: '#F6F8FC', borderColor: '#8C8D8E', borderWidth: 1, borderRadius: 5, rich: { a: { color: '#6E7079', lineHeight: 20, align: 'center' }, hr: { borderColor: '#8C8D8E', width: '100%', borderWidth: 1, height: 0 }, b: { color: '#4C5058', fontSize: 15, fontWeight: 'bold', lineHeight: 30 }, per: { color: '#fff', backgroundColor: '#4C5058', padding: [3, 4], borderRadius: 5 } } }, data: scources3 } ] }; // 使用刚指定的配置项和数据显示图表。 myChart.setOption(option);
7.配置tomcat服务器

先去官网下载tomcat服务器,这里使用的时8.5版本

一般此时IDEA会提醒你发现Web,是否配置Web框架,点击配置,前往“项目结构”,为Web配置工件,将右边SSMWork的与SSM相关的元素带入SSMWork_Web war中

 进入编辑配置,添加工件,大致配置如下,删除“部署”中“应用程序上下文”的地址

 5.效果展示

运行tomcat服务器后,默认先打开index.jsp网页,显示内容则表示tomcat配置没问题

 在url地址栏输入/courseClcik或者/searchClick显示如下

 

 网站默认10s刷新一次,此时开启scala目录的三个进程,再开启python脚本,页面便可以10秒更新一次数据,从而达到实时数据的展示

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/715548.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-04-25
下一篇 2022-04-25

发表评论

登录后才能评论

评论列表(0条)

保存