CVPR 2022: 图像分割论文大盘点

CVPR 2022: 图像分割论文大盘点,第1张

1 前言

本文盘点了CVPR 2022 目前为止的2D图像分割相关论文,包含语义分割和实例分割,总计22篇论文,值得学习。

2 语义分割 2.1 强监督

(1) ReSTR: Convolution-free Referring Image Segmentation Using Transformers

论文:https://arxiv.org/pdf/2203.16768.pdf

代码:暂无

(2) Bending Reality: Distortion-aware Transformers for Adapting to Panoramic Semantic Segmentation

论文:https://arxiv.org/pdf/2203.16768.pdf

代码:https://github.com/jamycheung/Trans4PASS

(3) Deep Hierarchical Semantic Segmentation

论文:https://arxiv.org/pdf/2203.14335.pdf

代码:https://github.com/0liliulei/HieraSeg

(4) Semantic Segmentation by Early Region Proxy

论文:https://arxiv.org/pdf/2203.14043.pdf

代码:https://github.com/YiFZhang/RegionProxy


(5) SimT: Handling Open-set Noise for Domain Adaptive Semantic Segmentation

论文:https://arxiv.org/pdf/2203.15202.pdf

代码:https://github.com/CityU-AIM-Group/SimT

(6) Rethinking Semantic Segmentation: A Prototype View

论文:https://arxiv.org/pdf/2203.15102.pdf

代码:https://github.com/tfzhou/ProtoSeg


2.2 弱监督

(1) Class Re-Activation Maps for Weakly-Supervised Semantic Segmentation

(弱监督语义分割的类重新激活图)

论文:https://arxiv.org/pdf/2203.00962.pdf

代码:https://github.com/zhaozhengChen/ReCAM


(2) Multi-class Token Transformer for Weakly Supervised Semantic Segmentation

论文:https://arxiv.org/pdf/2203.02891.pdf

代码:https://github.com/xulianuwa/MCTformer

(3) Learning Affinity from Attention: End-to-End Weakly-Supervised Semantic Segmentation with Transformers

论文:https://arxiv.org/pdf/2203.02664.pdf

代码:https://github.com/rulixiang/afa

(4) Self-supervised Image-specific Prototype Exploration for Weakly Supervised Semantic Segmentation

论文:https://arxiv.org/pdf/2203.02909.pdf

代码: https://github.com/chenqi1126/SIPE

(5) Cross Language Image Matching for Weakly Supervised Semantic Segmentation

论文:https://arxiv.org/pdf/2203.02668.pdf

代码: https://github.com/CVISZU/CLIMS


(6) Weakly Supervised Semantic Segmentation using Out-of-Distribution Data

论文:https://arxiv.org/pdf/2203.03860.pdf

代码:https://github.com/naver-ai/w-ood


(7) Threshold Matters in WSSS: Manipulating the Activation for the Robust and Accurate Segmentation Model Against Thresholds

论文:https://arxiv.org/pdf/2203.16045.pdf

代码:https://github.com/gaviotas/AMN


2.3 半监督

(1) ST++: Make Self-training Work Better for Semi-supervised Semantic Segmentation

论文:https://arxiv.org/pdf/2106.05095.pdf

代码:https://github.com/LiheYoung/ST-PlusPlus


(2) Semi-Supervised Semantic Segmentation Using Unreliable Pseudo-Labels

论文:https://arxiv.org/pdf/2203.03884.pdf

代码:https://github.com/Haochen-Wang409/U2PL

2.4 无监督

(1) GroupViT: Semantic Segmentation Emerges from Text Supervision

论文:https://arxiv.org/pdf/2202.11094.pdf

代码: https://jerryxu.net/GroupViT


3 实例分割 3.1 强监督

(1) BoxeR: Box-Attention for 2D and 3D Transformers

论文:https://arxiv.org/pdf/2111.13087.pdf

代码:https://github.com/kienduynguyen/BoxeR.


(2) E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation

论文:https://arxiv.org/pdf/2203.04074.pdf

代码:https://github.com/zhang-tao-whu/e2ec.


(3) Sparse Instance Activation for Real-Time Instance Segmentation

论文:https://arxiv.org/pdf/2203.12827.pdf

代码:https://github.com/hustvl/SparseInst

(4) SharpContour: A Contour-based Boundary Refinement Approach for Efficient and Accurate Instance Segmentation

论文:https://arxiv.org/pdf/2203.13312.pdf

代码:暂无

3.2 半监督

(1) Noisy Boundaries: Lemon or Lemonade for Semi-supervised Instance Segmentation?

论文:https://arxiv.org/pdf/2203.13427.pdf

代码:https://github.com/zhenyuw16/noisyboundaries

3.3 无监督

(1) FreeSOLO: Learning to Segment Objects without Annotations

论文:https://arxiv.org/pdf/2202.12181.pdf

代码:暂无

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/716386.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-04-25
下一篇 2022-04-25

发表评论

登录后才能评论

评论列表(0条)

保存