Java API *** 作ES

Java API *** 作ES,第1张

 1. 导入依赖

    
    
        org.elasticsearch.client
        elasticsearch-rest-high-level-client
        7.6.1
    
    
        org.apache.logging.log4j
        log4j-core
        2.11.1
    
    
    
        com.alibaba
        fastjson
        1.2.62
    
    
    junit
    junit
    4.12
    test

    
        org.testng
        testng
        6.14.3
        test
    
  
2. 使用JavaAPI来 *** 作ES集群

初始化连接

使用的是RestHighLevelClient去连接ES集群,后续 *** 作ES中的数据

private RestHighLevelClient restHighLevelClient;

public JobFullTextServiceImpl() {
        // 建立与ES的连接
        // 1. 使用RestHighLevelClient构建客户端连接。
        // 2. 基于RestClient.builder方法来构建RestClientBuilder
        // 3. 用HttpHost来添加ES的节点
        RestClientBuilder restClientBuilder = RestClient.builder(
              new HttpHost("192.168.11.111", 9200, "http")
            , new HttpHost("192.168.11.112", 9200, "http")
            , new HttpHost("192.168.11.113", 9200, "http"));
        restHighLevelClient = new RestHighLevelClient(restClientBuilder);
}
3. 新增/查询/删除/搜索/分页
* 新增:IndexRequest
* 更新:UpdateRequest
* 删除:DeleteRequest
* 根据ID获取:GetRequest
* 关键字检索:SearchRequest
3.1 新增数据

这里相当于动态映射

注意:可以在id字段上配置JsonField注解,并设置属性serialize=false,不会把id序列化,即没有必要存到es的source中,因为es会有id(会有单独设置id的方法),是source之外的。之前的插入数据的例子也没有把id放到source中。(这里可以根据需要自行取舍)

@Override
public void add(JobDetail jobDetail) throws IOException {
    //1.	构建IndexRequest对象,用来描述ES发起请求的数据。
    IndexRequest indexRequest = new IndexRequest(JOB_IDX);

    //2.	设置文档ID。
    indexRequest.id(jobDetail.getId() + "");

    //3.	使用FastJSON将实体类对象转换为JSON。
    String json = JSONObject.toJSONString(jobDetail);

    //4.	使用IndexRequest.source方法设置文档数据,并设置请求的数据为JSON格式。
    indexRequest.source(json, XContentType.JSON);

    //5.	使用ES High level client调用index方法发起请求,将一个文档添加到索引中。一般都会使用默认的请求方式:RequestOptions.DEFAULT
    restHighLevelClient.index(indexRequest, RequestOptions.DEFAULT);
}
3.2 修改数据

做更新的时候你可以先调用exists是否存在的api,因为es如果文件不存在你去 *** 作会有异常,判断是否存在是很快的,不需要封装数据。

@Override
public void update(JobDetail jobDetail) throws IOException {
    // 1.	判断对应ID的文档是否存在
    // a)	构建GetRequest
    GetRequest getRequest = new GetRequest(JOB_IDX, jobDetail.getId() + "");

    // b)	执行client的exists方法,发起请求,判断是否存在
    boolean exists = restHighLevelClient.exists(getRequest, RequestOptions.DEFAULT);

    if(exists) {
        // 2.	构建UpdateRequest请求
        UpdateRequest updateRequest = new UpdateRequest(JOB_IDX, jobDetail.getId() + "");

        // 3.	设置UpdateRequest的文档,并配置为JSON格式
        updateRequest.doc(JSONObject.toJSONString(jobDetail), XContentType.JSON);

        // 4.	执行client发起update请求
        restHighLevelClient.update(updateRequest, RequestOptions.DEFAULT);
    }
}
3.3 查询数据

查询出来别忘了单独设置id,因为我们插入source的时候没有放入id

@Override
public JobDetail findById(long id) throws IOException {
    // 1.	构建GetRequest请求。
    GetRequest getRequest = new GetRequest(JOB_IDX, id + "");

    // 2.	使用RestHighLevelClient.get发送GetRequest请求,并获取到ES服务器的响应。
    GetResponse getResponse = restHighLevelClient.get(getRequest, RequestOptions.DEFAULT);

    // 3.	将ES响应的数据转换为JSON字符串
    String json = getResponse.getSourceAsString();

    // 4.	并使用FastJSON将JSON字符串转换为JobDetail类对象
    JobDetail jobDetail = JSONObject.parseObject(json, JobDetail.class);

    // 5.	记得:单独设置ID
    jobDetail.setId(id);

    return jobDetail;
}
3.4 删除数据
@Override
public void deleteById(long id) throws IOException {
    // 1.	构建delete请求
    DeleteRequest deleteRequest = new DeleteRequest(JOB_IDX, id + "");

    // 2.	使用RestHighLevelClient执行delete请求
    restHighLevelClient.delete(deleteRequest, RequestOptions.DEFAULT);

}
3.5 关键字搜索
@Override
public List searchByKeywords(String keywords) throws IOException {
    // 1.构建SearchRequest检索请求
    // 专门用来进行全文检索、关键字检索的API
    SearchRequest searchRequest = new SearchRequest(JOB_IDX);

    // 2.创建一个SearchSourceBuilder专门用于构建查询条件
    SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();

    // 3.使用QueryBuilders.multiMatchQuery构建一个查询条件(搜索title、jd),并配置到SearchSourceBuilder
    MultiMatchQueryBuilder multiMatchQueryBuilder = QueryBuilders.multiMatchQuery(keywords, "title", "jd");

    // 将查询条件设置到查询请求构建器中
    searchSourceBuilder.query(multiMatchQueryBuilder);

    // 4.调用SearchRequest.source将查询条件设置到检索请求
    searchRequest.source(searchSourceBuilder);

    // 5.执行RestHighLevelClient.search发起请求
    SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);
    SearchHit[] hitArray = searchResponse.getHits().getHits();

    // 6.遍历结果
    ArrayList jobDetailArrayList = new ArrayList<>();

    for (SearchHit documentFields : hitArray) {
        // 1)获取命中的结果
        String json = documentFields.getSourceAsString();

        // 2)将JSON字符串转换为对象
        JobDetail jobDetail = JSONObject.parseObject(json, JobDetail.class);

        // 3)使用SearchHit.getId设置文档ID
        jobDetail.setId(Long.parseLong(documentFields.getId()));

        jobDetailArrayList.add(jobDetail);
    }

    return jobDetailArrayList;
}
3.6 分页

3.6.1 from、size

@Override
public Map searchByPage(String keywords, int pageNum, int pageSize) throws IOException {
    // 1.构建SearchRequest检索请求
    // 专门用来进行全文检索、关键字检索的API
    SearchRequest searchRequest = new SearchRequest(JOB_IDX);

    // 2.创建一个SearchSourceBuilder专门用于构建查询条件
    SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();

    // 3.使用QueryBuilders.multiMatchQuery构建一个查询条件(搜索title、jd),并配置到SearchSourceBuilder
    MultiMatchQueryBuilder multiMatchQueryBuilder = QueryBuilders.multiMatchQuery(keywords, "title", "jd");

    // 将查询条件设置到查询请求构建器中
    searchSourceBuilder.query(multiMatchQueryBuilder);

    // 每页显示多少条
    searchSourceBuilder.size(pageSize);
    // 设置从第几条开始查询
    searchSourceBuilder.from((pageNum - 1) * pageSize);

    // 4.调用SearchRequest.source将查询条件设置到检索请求
    searchRequest.source(searchSourceBuilder);

    // 5.执行RestHighLevelClient.search发起请求
    SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);
    SearchHit[] hitArray = searchResponse.getHits().getHits();

    // 6.遍历结果
    ArrayList jobDetailArrayList = new ArrayList<>();

    for (SearchHit documentFields : hitArray) {
        // 1)获取命中的结果
        String json = documentFields.getSourceAsString();

        // 2)将JSON字符串转换为对象
        JobDetail jobDetail = JSONObject.parseObject(json, JobDetail.class);

        // 3)使用SearchHit.getId设置文档ID
        jobDetail.setId(Long.parseLong(documentFields.getId()));

        jobDetailArrayList.add(jobDetail);
    }

    // 8.	将结果封装到Map结构中(带有分页信息)
    // a)	total -> 使用SearchHits.getTotalHits().value获取到所有的记录数
    // b)	content -> 当前分页中的数据
    long totalNum = searchResponse.getHits().getTotalHits().value;
    HashMap hashMap = new HashMap();
    hashMap.put("total", totalNum);
    hashMap.put("content", jobDetailArrayList);


    return hashMap;
}

3.6.2 scroll

* 第一次查询,不带scroll_id,所以要设置scroll超时时间

* 超时时间不要设置太短,否则会出现异常

* 第二次查询,SearchSrollRequest

@Override
public Map searchByScrollPage(String keywords, String scrollId, int pageSize) throws IOException {
    SearchResponse searchResponse = null;

    if(scrollId == null) {
        // 1.构建SearchRequest检索请求
        // 专门用来进行全文检索、关键字检索的API
        SearchRequest searchRequest = new SearchRequest(JOB_IDX);

        // 2.创建一个SearchSourceBuilder专门用于构建查询条件
        SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();

        // 3.使用QueryBuilders.multiMatchQuery构建一个查询条件(搜索title、jd),并配置到SearchSourceBuilder
        MultiMatchQueryBuilder multiMatchQueryBuilder = QueryBuilders.multiMatchQuery(keywords, "title", "jd");

        // 将查询条件设置到查询请求构建器中
        searchSourceBuilder.query(multiMatchQueryBuilder);

        // 每页显示多少条
        searchSourceBuilder.size(pageSize);

        // 4.调用SearchRequest.source将查询条件设置到检索请求
        searchRequest.source(searchSourceBuilder);

        //--------------------------
        // 设置scroll查询
        //--------------------------
        searchRequest.scroll(TimeValue.timeValueMinutes(5));

        // 5.执行RestHighLevelClient.search发起请求
        searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);

    }
    // 第二次查询的时候,直接通过scroll id查询数据
    else {
        SearchScrollRequest searchScrollRequest = new SearchScrollRequest(scrollId);
        searchScrollRequest.scroll(TimeValue.timeValueMinutes(5));

        // 使用RestHighLevelClient发送scroll请求
        searchResponse = restHighLevelClient.scroll(searchScrollRequest, RequestOptions.DEFAULT);
    }

    //--------------------------
    // 迭代ES响应的数据
    //--------------------------

    SearchHit[] hitArray = searchResponse.getHits().getHits();

    // 6.遍历结果
    ArrayList jobDetailArrayList = new ArrayList<>();

    for (SearchHit documentFields : hitArray) {
        // 1)获取命中的结果
        String json = documentFields.getSourceAsString();

        // 2)将JSON字符串转换为对象
        JobDetail jobDetail = JSONObject.parseObject(json, JobDetail.class);

        // 3)使用SearchHit.getId设置文档ID
        jobDetail.setId(Long.parseLong(documentFields.getId()));

        jobDetailArrayList.add(jobDetail);
    }

    // 8.	将结果封装到Map结构中(带有分页信息)
    // a)	total -> 使用SearchHits.getTotalHits().value获取到所有的记录数
    // b)	content -> 当前分页中的数据
    long totalNum = searchResponse.getHits().getTotalHits().value;
    HashMap hashMap = new HashMap();
    hashMap.put("scroll_id", searchResponse.getScrollId());
    hashMap.put("content", jobDetailArrayList);

    return hashMap;
}
3.7 高亮查询

1)高亮配置

// 设置高亮
HighlightBuilder highlightBuilder = new HighlightBuilder();
highlightBuilder.field("title");
highlightBuilder.field("jd");
highlightBuilder.preTags("");
highlightBuilder.postTags("");

2)需要将高亮的字段拼接在一起,设置到实体类中

取高亮数据时需要判断高亮字段是否为空;如果你根据两个字段去查询关键字,那不一定两个字段都会存在关键字。

// 设置高亮的一些文本到实体类中
// 封装了高亮
Map highlightFieldMap = documentFields.getHighlightFields();
HighlightField titleHL = highlightFieldMap.get("title");
HighlightField jdHL = highlightFieldMap.get("jd");

if(titleHL != null) {
 // 获取指定字段的高亮片段
 Text[] fragments = titleHL.getFragments();
 // 将这些高亮片段拼接成一个完整的高亮字段
 StringBuilder builder = new StringBuilder();
 for(Text text : fragments) {
     builder.append(text);
 }
 // 设置到实体类中
 jobDetail.setTitle(builder.toString());
}

if(jdHL != null) {
 // 获取指定字段的高亮片段
 Text[] fragments = jdHL.getFragments();
 // 将这些高亮片段拼接成一个完整的高亮字段
 StringBuilder builder = new StringBuilder();
 for(Text text : fragments) {
     builder.append(text);
 }
 // 设置到实体类中
 jobDetail.setJd(builder.toString());
}

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/719449.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-04-25
下一篇 2022-04-25

发表评论

登录后才能评论

评论列表(0条)

保存