这篇文章是之前【要matlab标定数据做双目相机矫正OpenCV C++】的补充,再加上了双目矫正的原理及代码注释。更新中……
本文所需数据为matlab标定的双目摄像头外参及内参,具体使用stereoCameraCalibrator
步骤可看之前那篇文章。后续将会实现CPP版本的双目标定,又挖了个坑😓。
补充了,在最下面。
找paper搭配 Sci-Hub 食用更佳 (๑•̀ㅂ•́)و✧
Sci-Hub 实时更新 : https://tool.yovisun.com/scihub/
公益科研通文献求助:https://www.ablesci.com/
立体匹配算法排行榜:KITTI 立体匹配算法排行榜,Middlebury 立体匹配算法排行榜
熟悉立体匹配的同学对这幅图一定不陌生,计算双目深度就是按照上图中的相似三角形进行求解。
视 差 d i s p a r i t y = X R − X T , 视差~~~disparity = X_R - X_T, 视差 disparity=XR−XT,
深
度
z
/
B
a
s
e
l
i
n
e
=
(
z
−
f
)
/
(
B
a
s
e
l
i
n
e
−
d
i
s
p
a
r
i
t
y
)
,
深度~~~z / Baseline = (z - f) /( Baseline - disparity),
深度 z/Baseline=(z−f)/(Baseline−disparity),
得
到
得到
得到
z
=
f
∗
B
a
s
e
l
i
n
e
/
d
i
s
p
a
r
i
t
y
~~~~~~~~~~~z = f*Baseline/disparity
z=f∗Baseline/disparity, 也即视差与深度成反比。
重投影矩阵Q
1
/
−
Q
[
14
]
b
a
s
e
l
i
n
e
(
m
m
)
根
据
标
定
的
相
机
外
参
计
算
。
如
果
只
需
要
相
对
深
度
取
1
即
可
1 / -Q[14] ~~~baseline (mm) ~~~~~~~ 根据标定的相机外参计算。如果只需要相对深度取1即可
1/−Q[14] baseline(mm) 根据标定的相机外参计算。如果只需要相对深度取1即可
Q
[
11
]
f
o
c
a
l
l
e
n
g
t
h
(
p
x
)
由
标
定
内
参
得
到
Q[11] ~~~~ ~~~~~~~ focal~length (px) ~~~ 由标定内参得到
Q[11] focal length(px) 由标定内参得到
以上的计算建立在双目相机的光轴完全平行,但这是不可能的,为此需要进行标定和矫正。
矫正主函数:
void StereoRectify(double *left_intrinsic, double *left_distort, double *right_intrinsic, double *right_distort,
double *rotation_mat, double *translation_vector, double *left_rota, double *right_rota, double *left_proj, double *right_proj, double *Q)
旋转矩阵求逆:
void mat33Inverse(double *PR, double *PRI) {
/* 3*3 matrix inverse */
double temp;
temp = PR[0] * PR[4] * PR[8] + PR[1] * PR[5] * PR[6] + PR[2] * PR[3] * PR[7] -
PR[2] * PR[4] * PR[6] - PR[1] * PR[3] * PR[8] - PR[0] * PR[5] * PR[7];
PRI[0] = (PR[4] * PR[8] - PR[5] * PR[7]) / temp;
PRI[1] = -(PR[1] * PR[8] - PR[2] * PR[7]) / temp;
PRI[2] = (PR[1] * PR[5] - PR[2] * PR[4]) / temp;
PRI[3] = -(PR[3] * PR[8] - PR[5] * PR[6]) / temp;
PRI[4] = (PR[0] * PR[8] - PR[2] * PR[6]) / temp;
PRI[5] = -(PR[0] * PR[5] - PR[2] * PR[3]) / temp;
PRI[6] = (PR[3] * PR[7] - PR[4] * PR[6]) / temp;
PRI[7] = -(PR[0] * PR[7] - PR[1] * PR[6]) / temp;
PRI[8] = (PR[0] * PR[4] - PR[1] * PR[3]) / temp;
}
// 3*3 -> 3*1 rodrigues Transform
rodriguesTransform(inv_rotation_mat, u, v, w);
罗格里斯变换使用到奇异值分解,使用的《Numerical Recipes in C》一书中的代码 svdcmp.c
void rodriguesTransform(double *inv_rotation_mat, double **u, double **v, double w[])
{ /*
* 使用 ** 来声明,然后用dmatrix来申请空间
* 这样在函数引用矩阵时,就不用声明矩阵大小了
*/
//double **a;
int i, j, k;
double t;
double t1[MN+1], t2[MN+1];
/* 矩阵均以M,N中的最大值来申请空间,避免越界 */
//a = dmatrix(1, MN, 1, MN); // inv_rotation_mat
for (i = 1; i <= M; i++) {
for (j = 1; j <= N; j++) {
//u[i][j] = a[i][j];
u[i][j] = inv_rotation_mat[i * 3 + j - 4];
}
}
svdcmp(u, MN, MN, w, v);
/* Sort the singular values in descending order */
for (i = 1; i <= N; i++) {
for (j = i + 1; j <= N; j++) {
if (w[i] < w[j]) { /* 对特异值排序 */
t = w[i];
w[i] = w[j];
w[j] = t;
/* 同时也要把矩阵U,V的列位置交换 */
/* 矩阵U */
for (k = 1; k <= M; k++) {
t1[k] = u[k][i];
}
for (k = 1; k <= M; k++) {
u[k][i] = u[k][j];
}
for (k = 1; k <= M; k++) {
u[k][j] = t1[k];
}
/* 矩阵V */
for (k = 1; k <= N; k++) {
t2[k] = v[k][i];
}
for (k = 1; k <= N; k++) {
v[k][i] = v[k][j];
}
for (k = 1; k <= N; k++) {
v[k][j] = t2[k];
}
}
}
}
}
// u * v'
R[0] = u[1][1] * v[1][1] + u[1][2] * v[1][2] + u[1][3] * v[1][3];
R[1] = u[1][1] * v[2][1] + u[1][2] * v[2][2] + u[1][3] * v[2][3];
R[2] = u[1][1] * v[3][1] + u[1][2] * v[3][2] + u[1][3] * v[3][3];
R[3] = u[2][1] * v[1][1] + u[2][2] * v[1][2] + u[2][3] * v[1][3];
R[4] = u[2][1] * v[2][1] + u[2][2] * v[2][2] + u[2][3] * v[2][3];
R[5] = u[2][1] * v[3][1] + u[2][2] * v[3][2] + u[2][3] * v[3][3];
R[6] = u[3][1] * v[1][1] + u[3][2] * v[1][2] + u[3][3] * v[1][3];
R[7] = u[3][1] * v[2][1] + u[3][2] * v[2][2] + u[3][3] * v[2][3];
R[8] = u[3][1] * v[3][1] + u[3][2] * v[3][2] + u[3][3] * v[3][3];
double r[3];
r[0] = R[7] - R[5];
r[1] = R[2] - R[6];
r[2] = R[3] - R[1];
float s = sqrt((r[0] * r[0] + r[1] * r[1] + r[2] * r[2]) * 0.25);
float c = (R[0] + R[4] + R[8] - 1) * 0.5;
c = c > 1. ? 1. : c < -1. ? -1. : c; // 1 -1
float theta = acos(c);
double rr[3]; // 1*3 一行三列
if (s < 1.0e-5)
{
float t;
if (c > 0)
{
double rr[3] = { 0, 0, 0 };
}
else
{
t = (R[0] + 1) * 0.5;
rr[0] = sqrt(MAX(t, float(0.)));
t = (R[4] + 1) * 0.5;
rr[1] = sqrt(MAX(t, float(0.))) * (R[1] < 0 ? -1. : 1.);
t = (R[8] + 1) * 0.5;
rr[2] = sqrt(MAX(t, float(0.))) * (R[2] < 0 ? -1. : 1.);
if (fabs(rr[0]) < fabs(rr[1]) && fabs(rr[0]) < fabs(rr[2]) && (R[5] > 0) != (rr[1] * rr[2] > 0))
rr[2] = -rr[2];
double rrsqrt = sqrt(rr[0] * rr[0] + rr[1] * rr[1] + rr[2] * rr[2]);
theta /= rrsqrt;
rr[0] = theta * rr[0];
rr[1] = theta * rr[1];
rr[2] = theta * rr[2];
}
}
else
{
float vth = 1 / (2 * s);
vth *= theta;
rr[0] = vth * r[0];
rr[1] = vth * r[1];
rr[2] = vth * r[2];
}
double eul[3];
eul[0] = rr[0] * (-0.5);
eul[1] = rr[1] * (-0.5);
eul[2] = rr[2] * (-0.5);
std::string GetExePath()
{
char szFilePath[MAX_PATH + 1] = { 0 };
GetModuleFileNameA(NULL, szFilePath, MAX_PATH);
/*
strrchr:函数功能:查找一个字符c在另一个字符串str中末次出现的位置(也就是从str的右侧开始查找字符c首次出现的位置),
并返回这个位置的地址。如果未能找到指定字符,那么函数将返回NULL。
使用这个地址返回从最后一个字符c到str末尾的字符串。
*/
(strrchr(szFilePath, '\'))[0] = 0; // 删除文件名,只获得路径字串//
std::string path = szFilePath;
int pos = path.rfind("\", path.length());//从后往前寻找第一个/出现的位置
path = path.substr(0, pos);//剪切[0,pos]
return path;
}
void getYamlParamters(std::string file_extrinsics, std::string file_intrisics)
{
cv::FileStorage fs_read(file_intrisics, cv::FileStorage::READ);
if (fs_read.isOpened()) {
NDouble cameraMatrixL[3 * 3], cameraMatrixR[3 * 3], distCoeffL[5], distCoeffR[5];
fs_read["cameraMatrixL"] >> cameraMatrixL;
fs_read["cameraDistcoeffL"] >> distCoeffL;
fs_read["cameraMatrixR"] >> cameraMatrixR;
fs_read["cameraDistcoeffR"] >> distCoeffR;
fs_read.release();
}
fs_read.open(file_extrinsics, cv::FileStorage::READ);
if (fs_read.isOpened()) {
NDouble Rotation_mat[3 * 3], Translation_vector[3];
fs_read["R"] >> Rotation_mat;
fs_read["T"] >> Translation_vector;
fs_read.release();
}
}
FileStorage fs("intrisics.yml", FileStorage::WRITE);
//time_t rawtime;
//time(&rawtime);
/*struct tm tm = *localtime(&(time_t) { time (NULL) });
char str[26];
asctime_s(str, sizeof str, &tm);
fs << "Time" << str;*/
if (fs.isOpened())
{
fs << "cameraMatrixL" << cameraMatrix << "cameraDistcoeffL" << distCoeffs << "cameraMatrixR" << cameraMatrixR << "cameraDistcoeffR" << distCoeffsR;
fs.release();
cout << "cameraMatrixL=:" << cameraMatrix << endl << "cameraDistcoeffL=:" << distCoeffs << endl << "cameraMatrixR=:" << cameraMatrixR << endl << "cameraDistcoeffR=:" << distCoeffsR << endl;
}
else
{
cout << "Error: can not save the intrinsics!!!!" << endl;
}
fs.open("extrinsics.yml", FileStorage::WRITE);
if (fs.isOpened())
{
fs << "R" << R << "T" << T << "E" << E << "F" << F << "Rl" << Rl << "Rr" << Rr << "Pl" << Pl << "Pr" << Pr << "Q" << Q;
cout << "R=" << R << endl << "T=" << T << endl << "E=" << E << endl << "F=" << F << endl << "Rl=" << Rl << endl << "Rr" << Rr << endl << "Pl" << Pl << endl << "Pr" << Pr << endl << "Q" << Q << endl;
fs.release();
}
else
{
cout << "Error: can not save the extrinsic parameters\n";
}
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace cv;
using namespace std;
//#define calibration
int getImagePathList(std::string folder, std::vector<cv::String> &imagePathList);
void calRealPoint(vector<vector<Point3f>>& obj, int boardWidth, int boardHeight, int imgNumber, int squareSize);
void outputCameraParam(Mat cameraMatrix, Mat distCoeffs, Mat cameraMatrixR, Mat distCoeffsR, Mat R, Mat T, Mat E, Mat F, Mat Rl, Mat Rr, Mat Pl, Mat Pr, Mat Q);
int getImagePathList(std::string folder, std::vector<cv::String> &imagePathList)
{
//search all the image in a folder
cv::glob(folder, imagePathList);
return 0;
}
int main()
{
//ifstream fin("left_img.txt"); /* 标定所用图像文件的路径 */
//ofstream fout("caliberation_result_left640.txt"); /* 保存标定结果的文件 */
// 读取每一幅图像,从中提取出角点,然后对角点进行亚像素精确化
int image_count = 0; /* 图像数量 */
Size image_size; /* 图像的尺寸 */
Size board_size = Size(8, 11); /* 标定板上每行、列的角点数 */
vector<Point2f> image_points_buf; /* 缓存每幅图像上检测到的角点 */
vector<vector<Point2f>> image_points_seq; /* 保存检测到的所有角点 */
string filenameL; // 图片名
vector<string> filenamesL;
cout << "请输入左棋盘格目录路径: " << endl;
string checkboard_path;
cin >> checkboard_path;
cout << "Checkboard left path: " << checkboard_path << endl << endl;
cout << "接着输入右棋盘格目录路径: " << endl;
string checkboard_pathR;
cin >> checkboard_pathR;
cout << "Checkboard right path: " << checkboard_pathR << endl << endl;
String folder = "F:/code/imgs/left_biao1/"; // checkboard_path // "F:/kinect/multi_thread/chess/chess/left/";//"F:/kinect/multi_thread/chess/RGB/left640/"; "F:/kinect/multi_thread/chess/RGB/left1/";// "F:/code/imgs/left/0.png"
std::vector<String> imagePathList;
getImagePathList(folder, imagePathList);
// right folder
String folderight = "F:/code/imgs/right_biao1/"; // checkboard_pathR // "F:/kinect/multi_thread/chess/chess/right/";// "F:/kinect/multi_thread/chess/RGB/right640/"; "F:/kinect/multi_thread/chess/RGB/right1/";// "F:/code/imgs/right/0.png"
std::vector<String> imagePathListright;
getImagePathList(folderight, imagePathListright);
//while (getline(fin, filename))
for (int i = 0; i < imagePathList.size(); i++)
{
++image_count;
filenameL = imagePathList[i];
Mat imageInput = imread(filenameL);
std::cout << filenameL << endl;
// 读入第一张图片时获取图片大小
if (image_count == 1)
{
image_size.width = imageInput.cols;
image_size.height = imageInput.rows;
}
/* 提取角点 */
if (0 == findChessboardCorners(imageInput, board_size, image_points_buf))
{
//cout << "can not find chessboard corners!\n"; // 找不到角点
cout << "**" << filenameL << "** can not find chessboard corners!\n";
//exit(1);
image_count--;
}
else
{
filenamesL.push_back(filenameL);
Mat view_gray;
cvtColor(imageInput, view_gray, COLOR_RGB2GRAY); // 转灰度图IMREAD_GRAYSCALE
/* 亚像素精确化 */
// image_points_buf 初始的角点坐标向量,同时作为亚像素坐标位置的输出
// Size(5,5) 搜索窗口大小
// (-1,-1)表示没有死区
// TermCriteria 角点的迭代过程的终止条件, 可以为迭代次数和角点精度两者的组合
cornerSubPix(view_gray, image_points_buf, Size(5, 5), Size(-1, -1), TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 30, 0.1)); // CV_TERMCRIT_ITER、CV_TERMCRIT_EPS
image_points_seq.push_back(image_points_buf); // 保存亚像素角点
/* 在图像上显示角点位置 */
drawChessboardCorners(view_gray, board_size, image_points_buf, false); // 用于在图片中标记角点
imshow("Camera Calibration", view_gray); // 显示图片
waitKey(10); //暂停0.5S
}
}
int CornerNum = board_size.width * board_size.height; // 每张图片上总的角点数
cout << board_size.width << board_size.height << image_size.width << endl;
//-------------以下是摄像机标定------------------
/*棋盘三维信息*/
Size square_size = Size(25, 25); // Size(60, 60); /* 实际测量得到的标定板上每个棋盘格的大小 */
vector<vector<Point3f>> object_points; /* 保存标定板上角点的三维坐标 */
/*内外参数*/
Mat cameraMatrix = Mat(3, 3, CV_32FC1, Scalar::all(0)); /* 摄像机内参数矩阵 */
vector<int> point_counts; // 每幅图像中角点的数量
Mat distCoeffs = Mat(1, 5, CV_32FC1, Scalar::all(0)); /* 摄像机的5个畸变系数:k1,k2,p1,p2,k3 */
vector<Mat> tvecsMat; /* 每幅图像的旋转向量 */
vector<Mat> rvecsMat; /* 每幅图像的平移向量 */
/* 初始化标定板上角点的三维坐标 */
int i, j, t;
for (t = 0; t < image_count; t++)
{
vector<Point3f> tempPointSet;
for (i = 0; i < board_size.height; i++)
{
for (j = 0; j < board_size.width; j++)
{
Point3f realPoint;
/* 假设标定板放在世界坐标系中z=0的平面上 */
realPoint.x = i * square_size.width;
realPoint.y = j * square_size.height;
realPoint.z = 0;
tempPointSet.push_back(realPoint);
}
}
object_points.push_back(tempPointSet);
}
/* 初始化每幅图像中的角点数量,假定每幅图像中都可以看到完整的标定板 */
for (i = 0; i < image_count; i++)
{
point_counts.push_back(board_size.width * board_size.height);
}
cout << "\n begin calibration \n" << endl;
/* 开始标定 */
// object_points 世界坐标系中的角点的三维坐标
// image_points_seq 每一个内角点对应的图像坐标点
// image_size 图像的像素尺寸大小
// cameraMatrix 输出,内参矩阵
// distCoeffs 输出,畸变系数
// rvecsMat 输出,旋转向量
// tvecsMat 输出,位移向量
// 0 标定时所采用的算法
calibrateCamera(object_points, image_points_seq, image_size, cameraMatrix, distCoeffs, rvecsMat, tvecsMat, 0);
//------------------------标定完成------------------------------------
// -------------------对标定结果进行评价------------------------------
double total_err = 0.0; /* 所有图像的平均误差的总和 */
double err = 0.0; /* 每幅图像的平均误差 */
vector<Point2f> image_points2; /* 保存重新计算得到的投影点 */
cout << "每幅图像的标定误差:\n";
for (i = 0; i < image_count; i++)
{
vector<Point3f> tempPointSet = object_points[i];
/* 通过得到的摄像机内外参数,对空间的三维点进行重新投影计算,得到新的投影点 */
projectPoints(tempPointSet, rvecsMat[i], tvecsMat[i], cameraMatrix, distCoeffs, image_points2);
/* 计算新的投影点和旧的投影点之间的误差*/
vector<Point2f> tempImagePoint = image_points_seq[i];
Mat tempImagePointMat = Mat(1, tempImagePoint.size(), CV_32FC2);
Mat image_points2Mat = Mat(1, image_points2.size(), CV_32FC2);
for (int j = 0; j < tempImagePoint.size(); j++)
{
image_points2Mat.at<Vec2f>(0, j) = Vec2f(image_points2[j].x, image_points2[j].y);
tempImagePointMat.at<Vec2f>(0, j) = Vec2f(tempImagePoint[j].x, tempImagePoint[j].y);
}
err = norm(image_points2Mat, tempImagePointMat, NORM_L2);
total_err += err /= point_counts[i];
cout << "第" << i + 1 << "幅图像的平均误差:" << err << "像素" << endl;
}
cout << "总体平均误差:" << total_err / image_count << "像素" << endl << endl;
//-------------------------评价完成---------------------------------------------
//-----------------------保存定标结果-------------------------------------------
Mat rotation_matrix = Mat(3, 3, CV_32FC1, Scalar::all(0)); /* 保存每幅图像的旋转矩阵 */
cout << "相机内参数矩阵:" << endl;
cout << cameraMatrix << endl << endl;
cout << "畸变系数:\n";
cout << distCoeffs << endl << endl << endl;
//for (int i = 0; i < image_count; i++)
//{
// cout << "第" << i + 1 << "幅图像的旋转向量:" << endl;
// cout << tvecsMat[i] << endl;
// /* 将旋转向量转换为相对应的旋转矩阵 */
// Rodrigues(tvecsMat[i], rotation_matrix);
// cout << "第" << i + 1 << "幅图像的旋转矩阵:" << endl;
// cout << rotation_matrix << endl;
// cout << "第" << i + 1 << "幅图像的平移向量:" << endl;
// cout << rvecsMat[i] << endl << endl;
//}
cout << "\n 左图标定完毕!\n" << endl;
// 右图
image_count = 0;
string filenameR; // 图片名
vector<string> filenamesR;
vector<vector<Point2f>> image_points_seqR; /* 保存检测到的所有角点 */
for (int i = 0; i < imagePathListright.size(); i++)
{
++image_count;
filenameR = imagePathListright[i];
Mat imageInputR = imread(filenameR);
std::cout << filenameR << endl;
//
// 读入第一张图片时获取图片大小
if (image_count == 1)
{
image_size.width = imageInputR.cols;
image_size.height = imageInputR.rows;
}
/* 提取角点 */
if (0 == findChessboardCorners(imageInputR, board_size, image_points_buf))
{
//cout << "can not find chessboard corners!\n"; // 找不到角点
cout << "**" << filenameR << "** can not find chessboard corners!\n";
//exit(1);
image_count--;
}
else
{
filenamesR.push_back(filenameR);
Mat view_gray;
cvtColor(imageInputR, view_gray, COLOR_RGB2GRAY); // 转灰度图IMREAD_GRAYSCALE
/* 亚像素精确化 */
// image_points_buf 初始的角点坐标向量,同时作为亚像素坐标位置的输出
// Size(5,5) 搜索窗口大小
// (-1,-1)表示没有死区
// TermCriteria 角点的迭代过程的终止条件, 可以为迭代次数和角点精度两者的组合
cornerSubPix(view_gray, image_points_buf, Size(5, 5), Size(-1, -1), TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 30, 0.1)); // CV_TERMCRIT_ITER、CV_TERMCRIT_EPS
image_points_seqR.push_back(image_points_buf); // 保存亚像素角点
/* 在图像上显示角点位置 */
drawChessboardCorners(view_gray, board_size, image_points_buf, false); // 用于在图片中标记角点
imshow("Camera Calibration", view_gray); // 显示图片
waitKey(10); //暂停0.5S
}
}
CornerNum = board_size.width * board_size.height; // 每张图片上总的角点数
cout << board_size.width << board_size.height << image_size.width << endl;
//-------------以下是摄像机标定------------------
/*棋盘三维信息*/
//Size square_size = Size(25, 25); // Size(60, 60); /* 实际测量得到的标定板上每个棋盘格的大小 */
vector<vector<Point3f>> object_pointsR; /* 保存标定板上角点的三维坐标 */
/*内外参数*/
Mat cameraMatrixR = Mat(3, 3, CV_32FC1, Scalar::all(0)); /* 摄像机内参数矩阵 */
vector<int> point_countsR; // 每幅图像中角点的数量
Mat distCoeffsR = Mat(1, 5, CV_32FC1, Scalar::all(0)); /* 摄像机的5个畸变系数:k1,k2,p1,p2,k3 */
vector<Mat> tvecsMatR; /* 每幅图像的旋转向量 */
vector<Mat> rvecsMatR; /* 每幅图像的平移向量 */
/* 初始化标定板上角点的三维坐标 */
//int i, j, t;
for (t = 0; t < image_count; t++)
{
vector<Point3f> tempPointSet;
for (i = 0; i < board_size.height; i++)
{
for (j = 0; j < board_size.width; j++)
{
Point3f realPoint;
/* 假设标定板放在世界坐标系中z=0的平面上 */
realPoint.x = i * square_size.width;
realPoint.y = j * square_size.height;
realPoint.z = 0;
tempPointSet.push_back(realPoint);
}
}
object_pointsR.push_back(tempPointSet);
}
/* 初始化每幅图像中的角点数量,假定每幅图像中都可以看到完整的标定板 */
for (i = 0; i < image_count; i++)
{
point_countsR.push_back(board_size.width * board_size.height);
}
cout << "\n begin calibration \n" << endl;
/* 开始标定 */
// object_pointsR 世界坐标系中的角点的三维坐标
// image_points_seqR 每一个内角点对应的图像坐标点
// image_size 图像的像素尺寸大小
// cameraMatrix 输出,内参矩阵
// distCoeffs 输出,畸变系数
// rvecsMatR 输出,旋转向量
// tvecsMatR 输出,位移向量
// 0 标定时所采用的算法
calibrateCamera(object_pointsR, image_points_seqR, image_size, cameraMatrixR, distCoeffsR, rvecsMatR, tvecsMatR, 0);
//------------------------标定完成------------------------------------
// -------------------对标定结果进行评价------------------------------
total_err = 0.0; /* 所有图像的平均误差的总和 */
err = 0.0; /* 每幅图像的平均误差 */
vector<Point2f> image_points2R; /* 保存重新计算得到的投影点 */
cout << "每幅图像的标定误差:\n";
for (i = 0; i < image_count; i++)
{
vector<Point3f> tempPointSet = object_pointsR[i];
/* 通过得到的摄像机内外参数,对空间的三维点进行重新投影计算,得到新的投影点 */
projectPoints(tempPointSet, rvecsMatR[i], tvecsMatR[i], cameraMatrixR, distCoeffsR, image_points2R);
/* 计算新的投影点和旧的投影点之间的误差*/
vector<Point2f> tempImagePoint = image_points_seqR[i];
Mat tempImagePointMat = Mat(1, tempImagePoint.size(), CV_32FC2);
Mat image_points2Mat = Mat(1, image_points2R.size(), CV_32FC2);
for (int j = 0; j < tempImagePoint.size(); j++)
{
image_points2Mat.at<Vec2f>(0, j) = Vec2f(image_points2R[j].x, image_points2R[j].y);
tempImagePointMat.at<Vec2f>(0, j) = Vec2f(tempImagePoint[j].x, tempImagePoint[j].y);
}
err = norm(image_points2Mat, tempImagePointMat, NORM_L2);
total_err += err /= point_countsR[i];
cout << "第" << i + 1 << "幅图像的平均误差:" << err << "像素" << endl;
}
cout << "总体平均误差:" << total_err / image_count << "像素" << endl << endl;
//-------------------------评价完成---------------------------------------------
//-----------------------保存定标结果-------------------------------------------
Mat rotation_matrixR = Mat(3, 3, CV_32FC1, Scalar::all(0)); /* 保存每幅图像的旋转矩阵 */
cout << "相机内参数矩阵:" << endl;
cout << cameraMatrixR << endl << endl;
cout << "畸变系数:\n";
cout << distCoeffsR << endl << endl << endl;
//for (int i = 0; i < image_count; i++)
//{
// cout << "第" << i + 1 << "幅图像的旋转向量:" << endl;
// cout << tvecsMatR[i] << endl;
// /* 将旋转向量转换为相对应的旋转矩阵 */
// Rodrigues(tvecsMatR[i], rotation_matrixR);
// cout << "第" << i + 1 << "幅图像的旋转矩阵:" << endl;
// cout << rotation_matrixR << endl;
// cout << "第" << i + 1 << "幅图像的平移向量:" << endl;
// cout << rvecsMatR[i] << endl << endl;
//}
cout << "\n 右图标定完毕!\n" << endl;
//横向的角点数目
const int boardWidth = 8;
//纵向的角点数目
const int boardHeight = 11;
//总的角点数目
const int boardCorner = boardWidth * boardHeight;
//相机标定时需要采用的图像帧数
const int frameNumber = image_count;
//标定板黑白格子的大小 单位是mm
const int squareSize = 25;
//标定板的总内角点
const Size boardSize = Size(boardWidth, boardHeight);
Mat R, T, E, F;
//R旋转矢量 T平移矢量 E本征矩阵 F基础矩阵
vector<Mat> rvecs; //R
vector<Mat> tvecs; //T
//左边摄像机所有照片角点的坐标集合
vector<vector<Point2f>> imagePointL;
//右边摄像机所有照片角点的坐标集合
vector<vector<Point2f>> imagePointR;
//各图像的角点的实际的物理坐标集合
vector<vector<Point3f>> objRealPoint;
//左边摄像机某一照片角点坐标集合
vector<Point2f> cornerL;
//右边摄像机某一照片角点坐标集合
vector<Point2f> cornerR;
Mat rgbImageL, grayImageL;
Mat rgbImageR, grayImageR;
Mat intrinsic;
Mat distortion_coeff;
//校正旋转矩阵R,投影矩阵P,重投影矩阵Q
Mat Rl, Rr, Pl, Pr, Q;
//映射表
Mat mapLx, mapLy, mapRx, mapRy;
Rect validROIL, validROIR;
int goodFrameCount = 0;
for (i = 0; i < frameNumber; i++) {
rgbImageL = imread(filenamesL[i], 1);
cvtColor(rgbImageL, grayImageL, COLOR_RGB2GRAY);
rgbImageR = imread(filenamesR[i], 1);
cvtColor(rgbImageR, grayImageR, COLOR_RGB2GRAY);
bool isFindL, isFindR;
isFindL = findChessboardCorners(rgbImageL, boardSize, cornerL);
isFindR = findChessboardCorners(rgbImageR, boardSize, cornerR);
if (isFindL == true && isFindR == true)
{
cornerSubPix(grayImageL, cornerL, Size(5, 5), Size(-1, 1), TermCriteria(TermCriteria::EPS | TermCriteria::COUNT, 20, 0.1));
drawChessboardCorners(rgbImageL, boardSize, cornerL, isFindL);
imshow("chessboardL", rgbImageL);
imagePointL.push_back(cornerL);
cornerSubPix(grayImageR, cornerR, Size(5, 5), Size(-1, -1), TermCriteria(TermCriteria::EPS | TermCriteria::COUNT, 20, 0.1));
drawChessboardCorners(rgbImageR, boardSize, cornerR, isFindR);
imshow("chessboardR", rgbImageR);
imagePointR.push_back(cornerR);
goodFrameCount++;
cout << "the image" << goodFrameCount << " is good" << endl;
}
else
{
cout << "the image is bad please try again" << endl;
}
if (waitKey(10) == 'q')
{
break;
}
}
//计算实际的校正点的三维坐标,根据实际标定格子的大小来设置
calRealPoint(objRealPoint, boardWidth, boardHeight, frameNumber, squareSize);
cout << "cal real successful" << endl;
//标定摄像头
double rms = stereoCalibrate(objRealPoint, imagePointL, imagePointR,
cameraMatrix, distCoeffs,
cameraMatrixR, distCoeffsR,
image_size, R, T, E, F, CALIB_USE_INTRINSIC_GUESS,
TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100, 1e-5));
cout << "Stereo Calibration done with RMS error = " << rms << endl;
stereoRectify(cameraMatrix, distCoeffs, cameraMatrixR, distCoeffsR, image_size, R, T, Rl,
Rr, Pl, Pr, Q, CALIB_ZERO_DISPARITY, -1, image_size, &validROIL, &validROIR);
//摄像机校正映射
initUndistortRectifyMap(cameraMatrix, distCoeffs, Rl, Pl, image_size, CV_32FC1, mapLx, mapLy);
initUndistortRectifyMap(cameraMatrixR, distCoeffsR, Rr, Pr, image_size, CV_32FC1, mapRx, mapRy);
Mat rectifyImageL, rectifyImageR;
cvtColor(grayImageL, rectifyImageL, COLOR_GRAY2BGR); //CV_GRAY2BGR
cvtColor(grayImageR, rectifyImageR, COLOR_GRAY2BGR);
imshow("Recitify Before", rectifyImageL);
cout << "按Q1退出..." << endl;
//经过remap之后,左右相机的图像已经共面并且行对准了
Mat rectifyImageL2, rectifyImageR2;
remap(rectifyImageL, rectifyImageL2, mapLx, mapLy, INTER_LINEAR);
remap(rectifyImageR, rectifyImageR2, mapRx, mapRy, INTER_LINEAR);
cout << "按Q2退出..." << endl;
imshow("rectifyImageL", rectifyImageL2);
imshow("rectifyImageR", rectifyImageR2);
outputCameraParam(cameraMatrix, distCoeffs, cameraMatrixR, distCoeffsR, R, T, E, F, Rl, Rr, Pl, Pr, Q);
//显示校正结果
Mat canvas;
double sf;
int w, h;
sf = 600. / MAX(image_size.width, image_size.height);
w = cvRound(image_size.width * sf);
h = cvRound(image_size.height * sf);
canvas.create(h, w * 2, CV_8UC3);
//左图像画到画布上
Mat canvasPart = canvas(Rect(0, 0, w, h));
resize(rectifyImageL2, canvasPart, canvasPart.size(), 0, 0, INTER_AREA);
Rect vroiL(cvRound(validROIL.x*sf), cvRound(validROIL.y*sf),
cvRound(validROIL.width*sf), cvRound(validROIL.height*sf));
rectangle(canvasPart, vroiL, Scalar(0, 0, 255), 3, 8);
cout << "Painted ImageL" << endl;
//右图像画到画布上
canvasPart = canvas(Rect(w, 0, w, h));
resize(rectifyImageR2, canvasPart, canvasPart.size(), 0, 0, INTER_LINEAR);
Rect vroiR(cvRound(validROIR.x*sf), cvRound(validROIR.y*sf),
cvRound(validROIR.width*sf), cvRound(validROIR.height*sf));
rectangle(canvasPart, vroiR, Scalar(0, 255, 0), 3, 8);
cout << "Painted ImageR" << endl;
//画上对应的线条
for (int i = 0; i < canvas.rows; i += 16)
line(canvas, Point(0, i), Point(canvas.cols, i), Scalar(0, 255, 0), 1, 8);
imshow("rectified", canvas);
cout << "wait key" << endl;
waitKey(0);
return 0;
}
/*计算标定板上模块的实际物理坐标*/
void calRealPoint(vector<vector<Point3f>>& obj, int boardWidth, int boardHeight, int imgNumber, int squareSize)
{
vector<Point3f> imgpoint;
for (int rowIndex = 0; rowIndex < boardHeight; rowIndex++)
{
for (int colIndex = 0; colIndex < boardWidth; colIndex++)
{
imgpoint.push_back(Point3f(rowIndex * squareSize, colIndex * squareSize, 0));
}
}
for (int imgIndex = 0; imgIndex < imgNumber; imgIndex++)
{
obj.push_back(imgpoint);
}
}
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)