学习Pandas

学习Pandas,第1张

Pandas

Pandas 库是一个免费、开源的第三方 Python 库,是 Python 数据分析必不可少的工具之一,它为 Python 数据分析提供了高性能,且易于使用的数据结构,即 Series 和 DataFrame。Pandas 库基于 Python NumPy 库开发而来,因此,它可以与 Python 的科学计算库配合使用。Pandas 提供了两种数据结构,分别是 Series(一维数组结构)与 DataFrame(二维数组结构),这两种数据结构极大地增强的了 Pandas 的数据分析能力。

中文教程:http://c.biancheng.net/pandas/

官方文档:https://pandas.pydata.org/docs/

样例

代码

import pandas as pd		# https://pandas.pydata.org/
import numpy as np
import random as rd
import matplotlib.pyplot as plt


sr = pd.Series([20,30,50,70,25], index=[0, 1, 2, 3, 4])	# 一列

# 类型转换
print('\nlist = \n',sr.to_list())
print('\ndict = \n',sr.to_dict())
print('\nnumpy = \n',sr.to_numpy())
print('\njson = \n',sr.to_json())
print('\nlatex = \n',sr.to_latex())
print('\nmarkdown = \n',sr.to_markdown())
print('\nunique = \n',sr.unique())	# 转换为np.array(或pandas.core.arrays.datetimes.DatetimeArray)


df = pd.DataFrame(	# 数据表:若干列
    {
        "Name": [
            "Braund, Mr. Owen Harris",
            "Allen, Mr. William Henry",
            "Bonnell, Miss. Elizabeth",
            "Allen, Mr. Elizabeth",
            "Braund, Miss. Elizabeth",
        ],
        "Age": [22, 35, 58, 12, 11],
        "Sex": ["male", "male", "female", "male", "female"],
    }
)


print('\ndict = \n',df.to_dict())
print('\nnumpy = \n',df.to_numpy())
print('\njson = \n',df.to_json())
print('\nlatex = \n',df.to_latex())
print('\nmarkdown = \n',df.to_markdown())


print('\n属性:')
df.info()	# 属性

print('\nshape = ',df.shape)	# 表格大小

print('\ndf = \n',df)

print('\nsr = \n',sr)


df['Age'] = sr			# 修改列(索引)
df.Age = sr				# 修改列(成员)
df['Age2'] = 2*df.Age - df.Age		# 创建新列
print('\ndf = \n',df)


df = df.rename(			# 重命名
    columns={
        "Age2": "age",
    }
)
print('\ndf = \n',df)


df.Age += 0.5			# 运算,类似numpy.array
print('\ndf = \n',df)


df.to_excel('./data.xlsx', sheet_name="123", index=False)

df2 = pd.read_excel('./data.xlsx', sheet_name="123")

print('\ndf2 = \n',df2)

print('\ndf2.head(2) = \n',df2.head(2))


age_sex = df[["Age", "Sex"]]	#部分列
print('\nage - sex = \n',age_sex)

df.iloc[1:4, 1] = 123	#部分数据
print('\ndf = \n',df)

age25 = df[df["Age"] > 25]	#过滤
print('\nage > 25 = \n',age25)


# 统计值
print('\nvalue_counts = \n',df["Age"].value_counts(),'\n')
print('max = ',df["Age"].max())
print('maxargmin = ',df["Age"].argmin())
print('\ndescribe = \n', type(df.describe()), '\n',df.describe())

# 按属性分组统计
print('mean = ',df["Age"].mean())
print('\nmean_by_Sex = \n',df.groupby("Sex")["Age"].mean())

# index前后缀
print('\nprefix = \n',df['Age'].add_prefix(123))
print('\nsuffix = \n',df['Age'].add_suffix('a'))


# 排序
df3 = df.sort_values(by=["Name","Age"])	# Name第一顺位,Age第二顺位
print('\nsort(df) = \n',df3)
df3 = df.sort_values(by="Age", key=lambda sr: abs(sr-60))	#设置排序函数,离60近的
print('\nsort(df) = \n',df3)

# 设置index
df3 = df.set_index(['Name','age'])	# Name和age,联合为index
print('\ndf.set_index = \n',df3)

# 转动枢轴
df3 = df.pivot(index="Name",columns="Sex", values=["Age","age"])
print('\ndf.pivot = \n',df3)

# 数据透视表
df3 = df.pivot_table(values="age", index="Age", columns="Sex", aggfunc="mean", margins=True)
print('\ndf.pivot_table = \n',df3)
df3 = df3.reset_index()
print('\ndf.pivot_table.reset_index = \n',df3)

# 转化为`long format`格式(就是除id外,只有单独一列)
df3 = df.melt(id_vars="Name")
print('\ndf.melt = \n',df3)

# 组合相同struct的数据表
df3 = pd.concat([df, df], axis=0)	#axis=0: 竖着拼接,axis=1: 横着拼接
print('\nconcat = \n',df3)
df3 = pd.concat([df, df], keys=["PM25", "NO2"])	#key: 为两个表添加index
print('\nconcat = \n',df3)


df2 = pd.DataFrame(	# 数据表:若干列
    {
        "Name": [
            "Braund, Mr. Owen Harris",
            "Allen, Mr. William Henry",
            "Bonnell, Miss. Elizabeth",
            "Allen, Mr. Elizabeth",
            "Braund, Miss. Elizabeth",
        ],
        "Work": [0,0,1,1,0],
		"Address": [3,1,5,3,5],
		"Time": [
			'2019-06-21 00:00:00+00:00',
			'2019-06-20 23:00:00+00:00',
			'2019-06-19 22:00:00+00:00',
			'2019-06-22 01:00:00+00:00',
			'2019-06-20 09:00:00+00:00',
			]
    }
)

# 按照Age列作为key,整合两个表
df3 = pd.merge(df, df2, how="left", on="Name")
print('\nmerge = \n',df3)

# 从文本转化为时间
print(pd.to_datetime(df2['Time']))

# 文本替换
df3 = df.replace({"male": "M", "female": "F"})
print('\ndf = \n',df3)


# 画图
df.plot(x="Sex", y="Age", c='b', linestyle='--')
df.plot.scatter(x="Sex", y="Age", c='r', marker='*')
plt.show()

测试结果

list =
 [20, 30, 50, 70, 25]

dict =
 {0: 20, 1: 30, 2: 50, 3: 70, 4: 25}

numpy =
 [20 30 50 70 25]

json =
 {"0":20,"1":30,"2":50,"3":70,"4":25}

latex =
 \begin{tabular}{lr}
\toprule
{} &   0 \\
\midrule
0 &  20 \\
1 &  30 \\
2 &  50 \\
3 &  70 \\
4 &  25 \\
\bottomrule
\end{tabular}


markdown =
 |    |   0 |
|---:|----:|
|  0 |  20 |
|  1 |  30 |
|  2 |  50 |
|  3 |  70 |
|  4 |  25 |

unique =
 [20 30 50 70 25]

dict =
 {'Name': {0: 'Braund, Mr. Owen Harris', 1: 'Allen, Mr. William Henry', 2: 'Bonnell, Miss. Elizabeth', 3: 'Allen, Mr. Elizabeth', 4: 'Braund, Miss. Elizabeth'}, 'Age': {0: 22, 1: 35, 2: 58, 3: 12, 4: 11}, 'Sex': {0: 'male', 1: 'male', 2: 'female', 3: 'male', 4: 'female'}}

numpy =
 [['Braund, Mr. Owen Harris' 22 'male']
 ['Allen, Mr. William Henry' 35 'male']
 ['Bonnell, Miss. Elizabeth' 58 'female']
 ['Allen, Mr. Elizabeth' 12 'male']
 ['Braund, Miss. Elizabeth' 11 'female']]

json =
 {"Name":{"0":"Braund, Mr. Owen Harris","1":"Allen, Mr. William Henry","2":"Bonnell, Miss. Elizabeth","3":"Allen, Mr. Elizabeth","4":"Braund, Miss. Elizabeth"},"Age":{"0":22,"1":35,"2":58,"3":12,"4":11},"Sex":{"0":"male","1":"male","2":"female","3":"male","4":"female"}}

latex =
 \begin{tabular}{llrl}
\toprule
{} &                      Name &  Age &     Sex \\
\midrule
0 &   Braund, Mr. Owen Harris &   22 &    male \\
1 &  Allen, Mr. William Henry &   35 &    male \\
2 &  Bonnell, Miss. Elizabeth &   58 &  female \\
3 &      Allen, Mr. Elizabeth &   12 &    male \\
4 &   Braund, Miss. Elizabeth &   11 &  female \\
\bottomrule
\end{tabular}


markdown =
 |    | Name                     |   Age | Sex    |
|---:|:-------------------------|------:|:-------|
|  0 | Braund, Mr. Owen Harris  |    22 | male   |
|  1 | Allen, Mr. William Henry |    35 | male   |
|  2 | Bonnell, Miss. Elizabeth |    58 | female |
|  3 | Allen, Mr. Elizabeth     |    12 | male   |
|  4 | Braund, Miss. Elizabeth  |    11 | female |

属性:

RangeIndex: 5 entries, 0 to 4
Data columns (total 3 columns):
 #   Column  Non-Null Count  Dtype
---  ------  --------------  -----
 0   Name    5 non-null      object
 1   Age     5 non-null      int64
 2   Sex     5 non-null      object
dtypes: int64(1), object(2)
memory usage: 248.0+ bytes

shape =  (5, 3)

df =
                        Name  Age     Sex
0   Braund, Mr. Owen Harris   22    male
1  Allen, Mr. William Henry   35    male
2  Bonnell, Miss. Elizabeth   58  female
3      Allen, Mr. Elizabeth   12    male
4   Braund, Miss. Elizabeth   11  female

sr =
 0    20
1    30
2    50
3    70
4    25
dtype: int64

df =
                        Name  Age     Sex  Age2
0   Braund, Mr. Owen Harris   20    male    20
1  Allen, Mr. William Henry   30    male    30
2  Bonnell, Miss. Elizabeth   50  female    50
3      Allen, Mr. Elizabeth   70    male    70
4   Braund, Miss. Elizabeth   25  female    25

df =
                        Name  Age     Sex  age
0   Braund, Mr. Owen Harris   20    male   20
1  Allen, Mr. William Henry   30    male   30
2  Bonnell, Miss. Elizabeth   50  female   50
3      Allen, Mr. Elizabeth   70    male   70
4   Braund, Miss. Elizabeth   25  female   25

df =
                        Name   Age     Sex  age
0   Braund, Mr. Owen Harris  20.5    male   20
1  Allen, Mr. William Henry  30.5    male   30
2  Bonnell, Miss. Elizabeth  50.5  female   50
3      Allen, Mr. Elizabeth  70.5    male   70
4   Braund, Miss. Elizabeth  25.5  female   25

df2 =
                        Name   Age     Sex  age
0   Braund, Mr. Owen Harris  20.5    male   20
1  Allen, Mr. William Henry  30.5    male   30
2  Bonnell, Miss. Elizabeth  50.5  female   50
3      Allen, Mr. Elizabeth  70.5    male   70
4   Braund, Miss. Elizabeth  25.5  female   25

df2.head(2) =
                        Name   Age   Sex  age
0   Braund, Mr. Owen Harris  20.5  male   20
1  Allen, Mr. William Henry  30.5  male   30

age - sex =
     Age     Sex
0  20.5    male
1  30.5    male
2  50.5  female
3  70.5    male
4  25.5  female

df =
                        Name    Age     Sex  age
0   Braund, Mr. Owen Harris   20.5    male   20
1  Allen, Mr. William Henry  123.0    male   30
2  Bonnell, Miss. Elizabeth  123.0  female   50
3      Allen, Mr. Elizabeth  123.0    male   70
4   Braund, Miss. Elizabeth   25.5  female   25

age > 25 =
                        Name    Age     Sex  age
1  Allen, Mr. William Henry  123.0    male   30
2  Bonnell, Miss. Elizabeth  123.0  female   50
3      Allen, Mr. Elizabeth  123.0    male   70
4   Braund, Miss. Elizabeth   25.5  female   25

value_counts =
 123.0    3
20.5     1
25.5     1
Name: Age, dtype: int64

max =  123.0
maxargmin =  0

describe =
 
               Age        age
count    5.000000   5.000000
mean    83.000000  39.000000
std     54.800776  20.736441
min     20.500000  20.000000
25%     25.500000  25.000000
50%    123.000000  30.000000
75%    123.000000  50.000000
max    123.000000  70.000000
mean =  83.0

mean_by_Sex =
 Sex
female    74.250000
male      88.833333
Name: Age, dtype: float64

prefix =
 1230     20.5
1231    123.0
1232    123.0
1233    123.0
1234     25.5
Name: Age, dtype: float64

suffix =
 0a     20.5
1a    123.0
2a    123.0
3a    123.0
4a     25.5
Name: Age, dtype: float64

sort(df) =
                        Name    Age     Sex  age
3      Allen, Mr. Elizabeth  123.0    male   70
1  Allen, Mr. William Henry  123.0    male   30
2  Bonnell, Miss. Elizabeth  123.0  female   50
4   Braund, Miss. Elizabeth   25.5  female   25
0   Braund, Mr. Owen Harris   20.5    male   20

sort(df) =
                        Name    Age     Sex  age
4   Braund, Miss. Elizabeth   25.5  female   25
0   Braund, Mr. Owen Harris   20.5    male   20
1  Allen, Mr. William Henry  123.0    male   30
2  Bonnell, Miss. Elizabeth  123.0  female   50
3      Allen, Mr. Elizabeth  123.0    male   70

df.set_index =
                                 Age     Sex
Name                     age
Braund, Mr. Owen Harris  20    20.5    male
Allen, Mr. William Henry 30   123.0    male
Bonnell, Miss. Elizabeth 50   123.0  female
Allen, Mr. Elizabeth     70   123.0    male
Braund, Miss. Elizabeth  25    25.5  female

df.pivot =
                             Age           age
Sex                      female   male female  male
Name
Allen, Mr. Elizabeth        NaN  123.0    NaN  70.0
Allen, Mr. William Henry    NaN  123.0    NaN  30.0
Bonnell, Miss. Elizabeth  123.0    NaN   50.0   NaN
Braund, Miss. Elizabeth    25.5    NaN   25.0   NaN
Braund, Mr. Owen Harris     NaN   20.5    NaN  20.0

df.pivot_table =
 Sex    female  male   All
Age
20.5      NaN  20.0  20.0
25.5     25.0   NaN  25.0
123.0    50.0  50.0  50.0
All      37.5  40.0  39.0

df.pivot_table.reset_index =
 Sex    Age  female  male   All
0     20.5     NaN  20.0  20.0
1     25.5    25.0   NaN  25.0
2    123.0    50.0  50.0  50.0
3      All    37.5  40.0  39.0

df.melt =
                         Name variable   value
0    Braund, Mr. Owen Harris      Age    20.5
1   Allen, Mr. William Henry      Age   123.0
2   Bonnell, Miss. Elizabeth      Age   123.0
3       Allen, Mr. Elizabeth      Age   123.0
4    Braund, Miss. Elizabeth      Age    25.5
5    Braund, Mr. Owen Harris      Sex    male
6   Allen, Mr. William Henry      Sex    male
7   Bonnell, Miss. Elizabeth      Sex  female
8       Allen, Mr. Elizabeth      Sex    male
9    Braund, Miss. Elizabeth      Sex  female
10   Braund, Mr. Owen Harris      age      20
11  Allen, Mr. William Henry      age      30
12  Bonnell, Miss. Elizabeth      age      50
13      Allen, Mr. Elizabeth      age      70
14   Braund, Miss. Elizabeth      age      25

concat =
                        Name    Age     Sex  age
0   Braund, Mr. Owen Harris   20.5    male   20
1  Allen, Mr. William Henry  123.0    male   30
2  Bonnell, Miss. Elizabeth  123.0  female   50
3      Allen, Mr. Elizabeth  123.0    male   70
4   Braund, Miss. Elizabeth   25.5  female   25
0   Braund, Mr. Owen Harris   20.5    male   20
1  Allen, Mr. William Henry  123.0    male   30
2  Bonnell, Miss. Elizabeth  123.0  female   50
3      Allen, Mr. Elizabeth  123.0    male   70
4   Braund, Miss. Elizabeth   25.5  female   25

concat =
                             Name    Age     Sex  age
PM25 0   Braund, Mr. Owen Harris   20.5    male   20
     1  Allen, Mr. William Henry  123.0    male   30
     2  Bonnell, Miss. Elizabeth  123.0  female   50
     3      Allen, Mr. Elizabeth  123.0    male   70
     4   Braund, Miss. Elizabeth   25.5  female   25
NO2  0   Braund, Mr. Owen Harris   20.5    male   20
     1  Allen, Mr. William Henry  123.0    male   30
     2  Bonnell, Miss. Elizabeth  123.0  female   50
     3      Allen, Mr. Elizabeth  123.0    male   70
     4   Braund, Miss. Elizabeth   25.5  female   25

merge =
                        Name    Age     Sex  age  Work  Address                       Time
0   Braund, Mr. Owen Harris   20.5    male   20     0        3  2019-06-21 00:00:00+00:00
1  Allen, Mr. William Henry  123.0    male   30     0        1  2019-06-20 23:00:00+00:00
2  Bonnell, Miss. Elizabeth  123.0  female   50     1        5  2019-06-19 22:00:00+00:00
3      Allen, Mr. Elizabeth  123.0    male   70     1        3  2019-06-22 01:00:00+00:00
4   Braund, Miss. Elizabeth   25.5  female   25     0        5  2019-06-20 09:00:00+00:00
0   2019-06-21 00:00:00+00:00
1   2019-06-20 23:00:00+00:00
2   2019-06-19 22:00:00+00:00
3   2019-06-22 01:00:00+00:00
4   2019-06-20 09:00:00+00:00
Name: Time, dtype: datetime64[ns, UTC]

df =
                        Name    Age Sex  age
0   Braund, Mr. Owen Harris   20.5   M   20
1  Allen, Mr. William Henry  123.0   M   30
2  Bonnell, Miss. Elizabeth  123.0   F   50
3      Allen, Mr. Elizabeth  123.0   M   70
4   Braund, Miss. Elizabeth   25.5   F   25

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/734706.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-04-27
下一篇 2022-04-27

发表评论

登录后才能评论

评论列表(0条)

保存