(1)按手机价格统计评分最大值、最小值、算术平均值和中位数。
import numpy as np price, rating = np.loadtxt('Mobile.csv', delimiter=',', usecols=(1, 2), dtype=float, unpack=True) print(price, rating) u_price = np.unique(price) print(u_price) p_size = u_price.size print(p_size) price_rating = np.zeros((p_size, 5)) j = 0 for i in u_price: price_rating[j, 0] = i price_code = np.where(price == i) print('满足某一价格条件的元素索引值:', price_code) print("使用元素索引值提取评分元素") m_rating = rating[price_code].astype(np.int) print('评分数组', m_rating) price_rating[j,1] = np.max(m_rating) price_rating[j,2] = np.min(m_rating) price_rating[j,3] = np.mean(m_rating) price_rating[j,4] = np.median(m_rating) j += 1 print('输出价格分类统计分析结果', price_rating)
(2)按手机品牌统计评分最大值、最小值、算术平均值和中位数 import numpy as np # brand ,rating= np.loadtxt('Mobile.csv', delimiter=',', usecols=(0,2), dtype=str,float) brand = np.loadtxt('Mobile.csv', delimiter=',', usecols=(0), dtype=str) # print(brand) # print(np.size(brand)) u_brand = np.unique(brand) # print(np.size(u_brand)) b_size = u_brand.size print(b_size) rating = np.loadtxt('Mobile.csv', delimiter=',', usecols=(2), dtype=float) brand_rating = np.zeros((b_size,5)).astype(str) # j = 0 for i in u_brand: brand_rating[j, 0] = i brand_code = np.where(brand == i) print('满足某一价格条件的元素索引值:', brand_code) print("使用元素索引值提取评分元素") m_rating = rating[brand_code].astype(np.int) print('评分数组', m_rating) brand_rating[j, 1] = np.max(m_rating) brand_rating[j, 2] = np.min(m_rating) brand_rating[j, 3] = np.mean(m_rating) brand_rating[j, 4] = np.median(m_rating) j += 1 print(brand_rating)
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)