类图
使用数组加链表实现,HashMap中每对(key,value)被封装成一个Entry对象(HashMap的静态内部类)。
static class Entry implements Map.Entry {
final K key;
V value;
Entry next;
int hash;
/**
* Creates new entry.
*/
Entry(int h, K k, V v, Entry n) {
value = v;
next = n;
key = k;
hash = h;
}
.........
}
通过计算每个entry对象key的hash值来定位entry在数组中的位置,因为会出现hash碰撞问题(不同的key的hash可能相同),所以使用单向链表来解决(数组每个元素位置都可能是一个hash桶,就是说都可能是一个单向链表),发生碰撞后会遍历链表里的每个元素如果key值相等就会覆盖,如果遍历到最后也没有找到key值相同的,那么这个新的entry就会插入到链表的顶端,然后再将这个新entry赋值到数组的这个下角标上。头插法:选择头插法是根据时间局部性原理,最近插入的最有可能被使用,所以使用头插。
初始容量为16(1<<4:1向左位移4位),最大容量为2的30次幂。
/**
* The default initial capacity - MUST be a power of two.
*/
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
/**
* The maximum capacity, used if a higher value is implicitly specified
* by either of the constructors with arguments.
* MUST be a power of two <= 1<<30.
*/
static final int MAXIMUM_CAPACITY = 1 << 30;
默认扩容因子是0.75,就是说每次数组容量达到length*0.75时,触发扩容,每次扩容一倍,数组的长度必须是2的幂次方。
/**
* The load factor used when none specified in constructor.
*/
static final float DEFAULT_LOAD_FACTOR = 0.75f;
扩容阈值,默认情况下是数组容量乘以加载因子。
/**
* The next size value at which to resize (capacity * load factor).
* @serial
*/
// If table == EMPTY_TABLE then this is the initial capacity at which the
// table will be created when inflated.
int threshold;
主要构造函数:
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor;
threshold = initialCapacity;
init();
}
变量名为table的Entry数组是存放数据的数组,当创建一个HashMap,会初始化一个空的Entry数组,将空数组赋值给table。
/**
* An empty table instance to share when the table is not inflated.
*/
static final Entry,?>[] EMPTY_TABLE = {};
/**
* The table, resized as necessary. Length MUST Always be a power of two.
*/
transient Entry[] table = (Entry[]) EMPTY_TABLE;
重要方法:put方法:
public V put(K key, V value) {
//判断是否是空数组,
if (table == EMPTY_TABLE) {
//膨胀数组,根据扩容阈值将空数组膨胀
inflateTable(threshold);
}
if (key == null)
return putForNullKey(value);
int hash = hash(key);
int i = indexFor(hash, table.length);
for (Entry e = table[i]; e != null; e = e.next) {
Object k;
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
modCount++;
addEntry(hash, key, value, i);
return null;
}
/**
* Inflates the table.
*/
private void inflateTable(int toSize) {
// Find a power of 2 >= toSize
int capacity = roundUpToPowerOf2(toSize);
threshold = (int) Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1);
table = new Entry[capacity];
initHashSeedAsNeeded(capacity);
}
使用Integer.highestOneBit方法计算出初始化数组容量,为什么number要减1呢?因为如果不减1,就直接左移一位(翻倍,乘2),那么如果number是16,32等这样2的幂次方数的话返回的就会是翻倍(乘2)的结果,就是说如果number是16,Integer.hightestOneBit返回的就会是32,但是预期结果应该是16.
private static int roundUpToPowerOf2(int number) {
// assert number >= 0 : "number must be non-negative";
return number >= MAXIMUM_CAPACITY
? MAXIMUM_CAPACITY
: (number > 1) ? Integer.highestOneBit((number - 1) << 1) : 1;
}
计算数组初始化容量的核心方法使用到了Integer.highestOneBit 方法,这个方法是取一个整数的小于等于自身并最接近自身的2的幂次方数。2的幂次方数的特点是:将数转为二进制方式显示,这个数最高位且只有一位数为1。
1 ----- 0000 0001
2 ----- 0000 0010
4 ----- 0000 0100
8 ----- 0000 1000
16 ----- 0001 0000
32 ----- 0010 0000
/**
* Returns an {@code int} value with at most a single one-bit, in the
* position of the highest-order ("leftmost") one-bit in the specified
* {@code int} value. Returns zero if the specified value has no
* one-bits in its two's complement binary representation, that is, if it
* is equal to zero.
*
* @param i the value whose highest one bit is to be computed
* @return an {@code int} value with a single one-bit, in the position
* of the highest-order one-bit in the specified value, or zero if
* the specified value is itself equal to zero.
* @since 1.5
*/
public static int highestOneBit(int i) {
// HD, Figure 3-1
i |= (i >> 1);
i |= (i >> 2);
i |= (i >> 4);
i |= (i >> 8);
i |= (i >> 16);
return i - (i >>> 1);
}
举例说明:int i=17,求17比他小且最大的2的幂次方数。经过5次位移加或运算将i变成了从i本身值最高位之后所有位数都是1的一个数值,这样i在右移一位就变成了最高位为0,其他位为1的数,再用i减去右移一位的数,正好就是最高位为1,其他位为0的数,这样就符合2的幂次方数的特性。那么为什么要位移这么多次呢?1+2+4+8+16=31正好是int类型正整数的上限范围2的31次幂,为了确保把原数最高位变成0.
17 ----- 0001 0001
>>1 ----- 0000 1000
| ----- 0001 1000
>>2 ----- 0000 0110
| ----- 0001 1110
>>4 ----- 0000 0001
| ----- 0001 1111
>>8 ----- 0000 0000
| ----- 0001 1111
..........
做了这么多事情为了什么初始化数组容量一定要是2的幂次方数呢?是因为在计算元素在数组中的下标时,用的是hash值&(数组长度-1),数组长度为2的幂次方数的话就可以保证(数组长度-1)它的二进制码高位为0,其他位都是1。与运算是:相同位都为1才为1,所以hash值&(数组长度-1)得出的结果肯定不会数组越界。
/**
* Returns index for hash code h.
*/
static int indexFor(int h, int length) {
// assert Integer.bitCount(length) == 1 : "length must be a non-zero power of 2";
return h & (length-1);
}
hash方法使用了这么多的异或是为了让hash值更加的散列,使用了这么多的位移,是为了让key的hash值的二进制高位也能参加到计算数组下标的与运算中。
/**
* Retrieve object hash code and applies a supplemental hash function to the
* result hash, which defends against poor quality hash functions. This is
* critical because HashMap uses power-of-two length hash tables, that
* otherwise encounter collisions for hashCodes that do not differ
* in lower bits. Note: Null keys always map to hash 0, thus index 0.
*/
final int hash(Object k) {
int h = hashSeed;
if (0 != h && k instanceof String) {
return sun.misc.Hashing.stringHash32((String) k);
}
h ^= k.hashCode();
// This function ensures that hashCodes that differ only by
// constant multiples at each bit position have a bounded
// number of collisions (approximately 8 at default load factor).
h ^= (h >>> 20) ^ (h >>> 12);
return h ^ (h >>> 7) ^ (h >>> 4);
}
关于扩容,在向map中添加元素时,如果没有相同key元素就会添加一个元素到map中,这样就有可能触发扩容,
/**
* Adds a new entry with the specified key, value and hash code to
* the specified bucket. It is the responsibility of this
* method to resize the table if appropriate.
*
* Subclass overrides this to alter the behavior of put method.
*/
void addEntry(int hash, K key, V value, int bucketIndex) {
/*
*当前map元素个数大于等于扩容因子,并且数组下标i的位置不是个空链表
*空链表这个条件在1.8中就没有了
*/
if ((size >= threshold) && (null != table[bucketIndex])) {
//扩容数组为之前的两倍
resize(2 * table.length);
hash = (null != key) ? hash(key) : 0;
//如果扩容后,从新计算数组下标
bucketIndex = indexFor(hash, table.length);
}
createEntry(hash, key, value, bucketIndex);
}
扩容方法,在不需要重算key的hash值的情况下,每次扩容,每个元素的下标不是老数组下标原位置就是原位置加上老数组的length(hash值不变,下标与运算时新数组比老数组的长度二进制高了一位)。
/**
* Rehashes the contents of this map into a new array with a
* larger capacity. This method is called automatically when the
* number of keys in this map reaches its threshold.
*
* If current capacity is MAXIMUM_CAPACITY, this method does not
* resize the map, but sets threshold to Integer.MAX_VALUE.
* This has the effect of preventing future calls.
*
* @param newCapacity the new capacity, MUST be a power of two;
* must be greater than current capacity unless current
* capacity is MAXIMUM_CAPACITY (in which case value
* is irrelevant).
*/
void resize(int newCapacity) {
Entry[] oldTable = table;
int oldCapacity = oldTable.length;
if (oldCapacity == MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return;
}
Entry[] newTable = new Entry[newCapacity];
transfer(newTable, initHashSeedAsNeeded(newCapacity));
table = newTable;
threshold = (int)Math.min(newCapacity * loadFactor, MAXIMUM_CAPACITY + 1);
}
transfer转移旧table里的元素到新table中,这个方法里会出现线程不安全问题(链表死循环)。
/**
* Transfers all entries from current table to newTable.
*/
void transfer(Entry[] newTable, boolean rehash) {
int newCapacity = newTable.length;
for (Entry e : table) {
while(null != e) {
Entry next = e.next;
if (rehash) {
e.hash = null == e.key ? 0 : hash(e.key);
}
int i = indexFor(e.hash, newCapacity);
e.next = newTable[i];
newTable[i] = e;
e = next;
}
}
}
关于modCount:我们知道 java.util.HashMap 不是线程安全的,因此如果在使用迭代器的过程中有其他线程修改了map,那么将抛出ConcurrentModificationException,这就是所谓fail-fast策略。这一策略在源码中的实现是通过 modCount 域,modCount 顾名思义就是修改次数,对HashMap 内容的修改都将增加这个值,那么在迭代器初始化过程中会将这个值赋给迭代器的 expectedModCount。在迭代过程中,判断 modCount 跟 expectedModCount 是否相等,如果不相等就表示已经有其他线程修改了 。JDK5和JDK6中变量modCount确实声明为volatile。但在JDK7和JDK8中,已经没有这样声明 。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)