目录
ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().
问题:
解决:
完整错误:
问题:
出现此错误是因为Python的逻辑运算符(and、or、not)是用来与布尔值(boolean)一起使用的,所以当试图将它们与序列或数组一起使用时,系统程序不清楚如何确定它是真的还是假的,因此会导致ValueError。
import pandas as pd
data = {
'Name': ['Microsoft Corporation', 'Google, LLC', 'Tesla, Inc.',\
'Apple Inc.', 'Netflix, Inc.'],
'Symbol': ['MSFT', 'GOOG', 'TSLA', 'AAPL', 'NFLX'],
'Industry': ['Tech', 'Tech', 'Automotive', 'Tech', 'Entertainment'],
'Shares': [100, 50, 150, 200, 80]
}
df = pd.DataFrame(data)
# print(df)
df
df_filtered = df[(df['Shares']>=100) and (df['Shares']<=150)]
df_filtered
# print(df_filtered)
解决:
将and改为&
df_filtered = df[(df['Shares']>=100) & (df['Shares']<=150)]
df_filtered
# print(df_filtered)
完整错误:
--------------------------------------------------------------------------- ValueError Traceback (most recent call last)in ----> 1 df_filtered = df[(df['Shares']>=100) and (df['Shares']<=150)] 2 df_filtered 3 # print(df_filtered) D:\anaconda\lib\site-packages\pandas\core\generic.py in __nonzero__(self) 1441 def __nonzero__(self): 1442 raise ValueError( -> 1443 f"The truth value of a {type(self).__name__} is ambiguous. " 1444 "Use a.empty, a.bool(), a.item(), a.any() or a.all()." 1445 ) ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().
参考:pandas
参考:ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)