机器学习:降维复习

机器学习:降维复习,第1张

非原创,代码来自葁sir

import numpy as np
import pandas as pd
from pandas import Series,DataFrame

import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn.datasets import load_iris
X, y = load_iris(return_X_y=True)
X.shape
(150, 4)
y.shape
(150,)
from sklearn.linear_model import LogisticRegression
import warnings
warnings.filterwarnings('ignore')
lr = LogisticRegression()
lr.fit(X,y)
lr.score(X,y)
0.9733333333333334
# 特征选择过滤掉第二列数据
X1 = X[:,[0,2,3]]
X1.shape
(150, 3)
lr1 = LogisticRegression(max_iter=70)
lr1.fit(X1,y)
lr1.score(X1,y)
0.9666666666666667
# 先用无监督学习的方式进行降维
from sklearn.decomposition import PCA
# n_components =None
# 设置整数:表示降维后所保留的特征个数(从信息保有量最高的特征 从上到下 依次保存)
# 设置浮点数:描述原始信息的百分比进行降维
# 方法1: 整数
pca = PCA(n_components=2)
X2 = pca.fit_transform(X)
X2
array([[-2.68412563,  0.31939725],
       [-2.71414169, -0.17700123],
       [-2.88899057, -0.14494943],
       [-2.74534286, -0.31829898],
       [-2.72871654,  0.32675451],
       [-2.28085963,  0.74133045],
       [-2.82053775, -0.08946138],
       [-2.62614497,  0.16338496],
       [-2.88638273, -0.57831175],
       [-2.6727558 , -0.11377425],
       [-2.50694709,  0.6450689 ],
       [-2.61275523,  0.01472994],
       [-2.78610927, -0.235112  ],
       [-3.22380374, -0.51139459],
       [-2.64475039,  1.17876464],
       [-2.38603903,  1.33806233],
       [-2.62352788,  0.81067951],
       [-2.64829671,  0.31184914],
       [-2.19982032,  0.87283904],
       [-2.5879864 ,  0.51356031],
       [-2.31025622,  0.39134594],
       [-2.54370523,  0.43299606],
       [-3.21593942,  0.13346807],
       [-2.30273318,  0.09870885],
       [-2.35575405, -0.03728186],
       [-2.50666891, -0.14601688],
       [-2.46882007,  0.13095149],
       [-2.56231991,  0.36771886],
       [-2.63953472,  0.31203998],
       [-2.63198939, -0.19696122],
       [-2.58739848, -0.20431849],
       [-2.4099325 ,  0.41092426],
       [-2.64886233,  0.81336382],
       [-2.59873675,  1.09314576],
       [-2.63692688, -0.12132235],
       [-2.86624165,  0.06936447],
       [-2.62523805,  0.59937002],
       [-2.80068412,  0.26864374],
       [-2.98050204, -0.48795834],
       [-2.59000631,  0.22904384],
       [-2.77010243,  0.26352753],
       [-2.84936871, -0.94096057],
       [-2.99740655, -0.34192606],
       [-2.40561449,  0.18887143],
       [-2.20948924,  0.43666314],
       [-2.71445143, -0.2502082 ],
       [-2.53814826,  0.50377114],
       [-2.83946217, -0.22794557],
       [-2.54308575,  0.57941002],
       [-2.70335978,  0.10770608],
       [ 1.28482569,  0.68516047],
       [ 0.93248853,  0.31833364],
       [ 1.46430232,  0.50426282],
       [ 0.18331772, -0.82795901],
       [ 1.08810326,  0.07459068],
       [ 0.64166908, -0.41824687],
       [ 1.09506066,  0.28346827],
       [-0.74912267, -1.00489096],
       [ 1.04413183,  0.2283619 ],
       [-0.0087454 , -0.72308191],
       [-0.50784088, -1.26597119],
       [ 0.51169856, -0.10398124],
       [ 0.26497651, -0.55003646],
       [ 0.98493451, -0.12481785],
       [-0.17392537, -0.25485421],
       [ 0.92786078,  0.46717949],
       [ 0.66028376, -0.35296967],
       [ 0.23610499, -0.33361077],
       [ 0.94473373, -0.54314555],
       [ 0.04522698, -0.58383438],
       [ 1.11628318, -0.08461685],
       [ 0.35788842, -0.06892503],
       [ 1.29818388, -0.32778731],
       [ 0.92172892, -0.18273779],
       [ 0.71485333,  0.14905594],
       [ 0.90017437,  0.32850447],
       [ 1.33202444,  0.24444088],
       [ 1.55780216,  0.26749545],
       [ 0.81329065, -0.1633503 ],
       [-0.30558378, -0.36826219],
       [-0.06812649, -0.70517213],
       [-0.18962247, -0.68028676],
       [ 0.13642871, -0.31403244],
       [ 1.38002644, -0.42095429],
       [ 0.58800644, -0.48428742],
       [ 0.80685831,  0.19418231],
       [ 1.22069088,  0.40761959],
       [ 0.81509524, -0.37203706],
       [ 0.24595768, -0.2685244 ],
       [ 0.16641322, -0.68192672],
       [ 0.46480029, -0.67071154],
       [ 0.8908152 , -0.03446444],
       [ 0.23054802, -0.40438585],
       [-0.70453176, -1.01224823],
       [ 0.35698149, -0.50491009],
       [ 0.33193448, -0.21265468],
       [ 0.37621565, -0.29321893],
       [ 0.64257601,  0.01773819],
       [-0.90646986, -0.75609337],
       [ 0.29900084, -0.34889781],
       [ 2.53119273, -0.00984911],
       [ 1.41523588, -0.57491635],
       [ 2.61667602,  0.34390315],
       [ 1.97153105, -0.1797279 ],
       [ 2.35000592, -0.04026095],
       [ 3.39703874,  0.55083667],
       [ 0.52123224, -1.19275873],
       [ 2.93258707,  0.3555    ],
       [ 2.32122882, -0.2438315 ],
       [ 2.91675097,  0.78279195],
       [ 1.66177415,  0.24222841],
       [ 1.80340195, -0.21563762],
       [ 2.1655918 ,  0.21627559],
       [ 1.34616358, -0.77681835],
       [ 1.58592822, -0.53964071],
       [ 1.90445637,  0.11925069],
       [ 1.94968906,  0.04194326],
       [ 3.48705536,  1.17573933],
       [ 3.79564542,  0.25732297],
       [ 1.30079171, -0.76114964],
       [ 2.42781791,  0.37819601],
       [ 1.19900111, -0.60609153],
       [ 3.49992004,  0.4606741 ],
       [ 1.38876613, -0.20439933],
       [ 2.2754305 ,  0.33499061],
       [ 2.61409047,  0.56090136],
       [ 1.25850816, -0.17970479],
       [ 1.29113206, -0.11666865],
       [ 2.12360872, -0.20972948],
       [ 2.38800302,  0.4646398 ],
       [ 2.84167278,  0.37526917],
       [ 3.23067366,  1.37416509],
       [ 2.15943764, -0.21727758],
       [ 1.44416124, -0.14341341],
       [ 1.78129481, -0.49990168],
       [ 3.07649993,  0.68808568],
       [ 2.14424331,  0.1400642 ],
       [ 1.90509815,  0.04930053],
       [ 1.16932634, -0.16499026],
       [ 2.10761114,  0.37228787],
       [ 2.31415471,  0.18365128],
       [ 1.9222678 ,  0.40920347],
       [ 1.41523588, -0.57491635],
       [ 2.56301338,  0.2778626 ],
       [ 2.41874618,  0.3047982 ],
       [ 1.94410979,  0.1875323 ],
       [ 1.52716661, -0.37531698],
       [ 1.76434572,  0.07885885],
       [ 1.90094161,  0.11662796],
       [ 1.39018886, -0.28266094]])
lr.fit(X2,y)
LogisticRegression()
lr.score(X2,y)
0.9666666666666667
# 方法2 浮点数
pca2 = PCA(n_components=0.99)
X3 = pca2.fit_transform(X)
lr.fit(X3,y)
LogisticRegression()
lr.score(X3,y)
0.9733333333333334
X3
array([[-2.68412563,  0.31939725, -0.02791483],
       [-2.71414169, -0.17700123, -0.21046427],
       [-2.88899057, -0.14494943,  0.01790026],
       [-2.74534286, -0.31829898,  0.03155937],
       [-2.72871654,  0.32675451,  0.09007924],
       [-2.28085963,  0.74133045,  0.16867766],
       [-2.82053775, -0.08946138,  0.25789216],
       [-2.62614497,  0.16338496, -0.02187932],
       [-2.88638273, -0.57831175,  0.02075957],
       [-2.6727558 , -0.11377425, -0.19763272],
       [-2.50694709,  0.6450689 , -0.07531801],
       [-2.61275523,  0.01472994,  0.10215026],
       [-2.78610927, -0.235112  , -0.20684443],
       [-3.22380374, -0.51139459,  0.06129967],
       [-2.64475039,  1.17876464, -0.15162752],
       [-2.38603903,  1.33806233,  0.2777769 ],
       [-2.62352788,  0.81067951,  0.13818323],
       [-2.64829671,  0.31184914,  0.02666832],
       [-2.19982032,  0.87283904, -0.12030552],
       [-2.5879864 ,  0.51356031,  0.21366517],
       [-2.31025622,  0.39134594, -0.23944404],
       [-2.54370523,  0.43299606,  0.20845723],
       [-3.21593942,  0.13346807,  0.29239675],
       [-2.30273318,  0.09870885,  0.03912326],
       [-2.35575405, -0.03728186,  0.12502108],
       [-2.50666891, -0.14601688, -0.25342004],
       [-2.46882007,  0.13095149,  0.09491058],
       [-2.56231991,  0.36771886, -0.07849421],
       [-2.63953472,  0.31203998, -0.1459089 ],
       [-2.63198939, -0.19696122,  0.04077108],
       [-2.58739848, -0.20431849, -0.07722299],
       [-2.4099325 ,  0.41092426, -0.14552497],
       [-2.64886233,  0.81336382,  0.22566915],
       [-2.59873675,  1.09314576,  0.15781081],
       [-2.63692688, -0.12132235, -0.14304958],
       [-2.86624165,  0.06936447, -0.16433231],
       [-2.62523805,  0.59937002, -0.26835038],
       [-2.80068412,  0.26864374,  0.09369908],
       [-2.98050204, -0.48795834,  0.07292705],
       [-2.59000631,  0.22904384, -0.0800823 ],
       [-2.77010243,  0.26352753,  0.07724769],
       [-2.84936871, -0.94096057, -0.34923038],
       [-2.99740655, -0.34192606,  0.19250921],
       [-2.40561449,  0.18887143,  0.26386795],
       [-2.20948924,  0.43666314,  0.29874275],
       [-2.71445143, -0.2502082 , -0.09767814],
       [-2.53814826,  0.50377114,  0.16670564],
       [-2.83946217, -0.22794557,  0.08372685],
       [-2.54308575,  0.57941002, -0.01711502],
       [-2.70335978,  0.10770608, -0.08929401],
       [ 1.28482569,  0.68516047, -0.40656803],
       [ 0.93248853,  0.31833364, -0.01801419],
       [ 1.46430232,  0.50426282, -0.33832576],
       [ 0.18331772, -0.82795901, -0.17959139],
       [ 1.08810326,  0.07459068, -0.3077579 ],
       [ 0.64166908, -0.41824687,  0.04107609],
       [ 1.09506066,  0.28346827,  0.16981024],
       [-0.74912267, -1.00489096,  0.01230292],
       [ 1.04413183,  0.2283619 , -0.41533608],
       [-0.0087454 , -0.72308191,  0.28114143],
       [-0.50784088, -1.26597119, -0.26981718],
       [ 0.51169856, -0.10398124,  0.13054775],
       [ 0.26497651, -0.55003646, -0.69414683],
       [ 0.98493451, -0.12481785, -0.06211441],
       [-0.17392537, -0.25485421,  0.09045769],
       [ 0.92786078,  0.46717949, -0.31462098],
       [ 0.66028376, -0.35296967,  0.32802753],
       [ 0.23610499, -0.33361077, -0.27116184],
       [ 0.94473373, -0.54314555, -0.49951905],
       [ 0.04522698, -0.58383438, -0.2350021 ],
       [ 1.11628318, -0.08461685,  0.45962099],
       [ 0.35788842, -0.06892503, -0.22985389],
       [ 1.29818388, -0.32778731, -0.34785435],
       [ 0.92172892, -0.18273779, -0.23107178],
       [ 0.71485333,  0.14905594, -0.32180094],
       [ 0.90017437,  0.32850447, -0.31620907],
       [ 1.33202444,  0.24444088, -0.52170278],
       [ 1.55780216,  0.26749545, -0.16492098],
       [ 0.81329065, -0.1633503 ,  0.0354245 ],
       [-0.30558378, -0.36826219, -0.31849158],
       [-0.06812649, -0.70517213, -0.24421381],
       [-0.18962247, -0.68028676, -0.30642056],
       [ 0.13642871, -0.31403244, -0.17724277],
       [ 1.38002644, -0.42095429,  0.01616713],
       [ 0.58800644, -0.48428742,  0.4444335 ],
       [ 0.80685831,  0.19418231,  0.38896306],
       [ 1.22069088,  0.40761959, -0.23716701],
       [ 0.81509524, -0.37203706, -0.61472084],
       [ 0.24595768, -0.2685244 ,  0.18836681],
       [ 0.16641322, -0.68192672, -0.06000923],
       [ 0.46480029, -0.67071154, -0.02430686],
       [ 0.8908152 , -0.03446444, -0.00994693],
       [ 0.23054802, -0.40438585, -0.22941024],
       [-0.70453176, -1.01224823, -0.10569115],
       [ 0.35698149, -0.50491009,  0.01661717],
       [ 0.33193448, -0.21265468,  0.08320429],
       [ 0.37621565, -0.29321893,  0.07799635],
       [ 0.64257601,  0.01773819, -0.20539497],
       [-0.90646986, -0.75609337, -0.01259965],
       [ 0.29900084, -0.34889781,  0.01058166],
       [ 2.53119273, -0.00984911,  0.76016543],
       [ 1.41523588, -0.57491635,  0.29632253],
       [ 2.61667602,  0.34390315, -0.11078788],
       [ 1.97153105, -0.1797279 ,  0.10842466],
       [ 2.35000592, -0.04026095,  0.28538956],
       [ 3.39703874,  0.55083667, -0.34843756],
       [ 0.52123224, -1.19275873,  0.5456593 ],
       [ 2.93258707,  0.3555    , -0.42023994],
       [ 2.32122882, -0.2438315 , -0.34830439],
       [ 2.91675097,  0.78279195,  0.42333542],
       [ 1.66177415,  0.24222841,  0.24244019],
       [ 1.80340195, -0.21563762, -0.03764817],
       [ 2.1655918 ,  0.21627559,  0.03332664],
       [ 1.34616358, -0.77681835,  0.28190288],
       [ 1.58592822, -0.53964071,  0.62902933],
       [ 1.90445637,  0.11925069,  0.47963982],
       [ 1.94968906,  0.04194326,  0.04418617],
       [ 3.48705536,  1.17573933,  0.13389487],
       [ 3.79564542,  0.25732297, -0.51376776],
       [ 1.30079171, -0.76114964, -0.34499504],
       [ 2.42781791,  0.37819601,  0.21911932],
       [ 1.19900111, -0.60609153,  0.51185551],
       [ 3.49992004,  0.4606741 , -0.57318224],
       [ 1.38876613, -0.20439933, -0.06452276],
       [ 2.2754305 ,  0.33499061,  0.28615009],
       [ 2.61409047,  0.56090136, -0.20553452],
       [ 1.25850816, -0.17970479,  0.0458477 ],
       [ 1.29113206, -0.11666865,  0.23125646],
       [ 2.12360872, -0.20972948,  0.15418002],
       [ 2.38800302,  0.4646398 , -0.44953019],
       [ 2.84167278,  0.37526917, -0.49889808],
       [ 3.23067366,  1.37416509, -0.11454821],
       [ 2.15943764, -0.21727758,  0.20876317],
       [ 1.44416124, -0.14341341, -0.15323389],
       [ 1.78129481, -0.49990168, -0.17287519],
       [ 3.07649993,  0.68808568, -0.33559229],
       [ 2.14424331,  0.1400642 ,  0.73487894],
       [ 1.90509815,  0.04930053,  0.16218024],
       [ 1.16932634, -0.16499026,  0.28183584],
       [ 2.10761114,  0.37228787,  0.02729113],
       [ 2.31415471,  0.18365128,  0.32269375],
       [ 1.9222678 ,  0.40920347,  0.1135866 ],
       [ 1.41523588, -0.57491635,  0.29632253],
       [ 2.56301338,  0.2778626 ,  0.29256952],
       [ 2.41874618,  0.3047982 ,  0.50448266],
       [ 1.94410979,  0.1875323 ,  0.17782509],
       [ 1.52716661, -0.37531698, -0.12189817],
       [ 1.76434572,  0.07885885,  0.13048163],
       [ 1.90094161,  0.11662796,  0.72325156],
       [ 1.39018886, -0.28266094,  0.36290965]])
pca.explained_variance_ # 空间转换后的方差大小
array([4.22824171, 0.24267075])
pca2.explained_variance_ 
array([4.22824171, 0.24267075, 0.0782095 ])
# 有监督的降维方式:LDA
# 线性判别分析法 有监督的降维
# 有利于做线性分割
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
data = X[:,:2] # 取两个
data
array([[5.1, 3.5],
       [4.9, 3. ],
       [4.7, 3.2],
       [4.6, 3.1],
       [5. , 3.6],
       [5.4, 3.9],
       [4.6, 3.4],
       [5. , 3.4],
       [4.4, 2.9],
       [4.9, 3.1],
       [5.4, 3.7],
       [4.8, 3.4],
       [4.8, 3. ],
       [4.3, 3. ],
       [5.8, 4. ],
       [5.7, 4.4],
       [5.4, 3.9],
       [5.1, 3.5],
       [5.7, 3.8],
       [5.1, 3.8],
       [5.4, 3.4],
       [5.1, 3.7],
       [4.6, 3.6],
       [5.1, 3.3],
       [4.8, 3.4],
       [5. , 3. ],
       [5. , 3.4],
       [5.2, 3.5],
       [5.2, 3.4],
       [4.7, 3.2],
       [4.8, 3.1],
       [5.4, 3.4],
       [5.2, 4.1],
       [5.5, 4.2],
       [4.9, 3.1],
       [5. , 3.2],
       [5.5, 3.5],
       [4.9, 3.6],
       [4.4, 3. ],
       [5.1, 3.4],
       [5. , 3.5],
       [4.5, 2.3],
       [4.4, 3.2],
       [5. , 3.5],
       [5.1, 3.8],
       [4.8, 3. ],
       [5.1, 3.8],
       [4.6, 3.2],
       [5.3, 3.7],
       [5. , 3.3],
       [7. , 3.2],
       [6.4, 3.2],
       [6.9, 3.1],
       [5.5, 2.3],
       [6.5, 2.8],
       [5.7, 2.8],
       [6.3, 3.3],
       [4.9, 2.4],
       [6.6, 2.9],
       [5.2, 2.7],
       [5. , 2. ],
       [5.9, 3. ],
       [6. , 2.2],
       [6.1, 2.9],
       [5.6, 2.9],
       [6.7, 3.1],
       [5.6, 3. ],
       [5.8, 2.7],
       [6.2, 2.2],
       [5.6, 2.5],
       [5.9, 3.2],
       [6.1, 2.8],
       [6.3, 2.5],
       [6.1, 2.8],
       [6.4, 2.9],
       [6.6, 3. ],
       [6.8, 2.8],
       [6.7, 3. ],
       [6. , 2.9],
       [5.7, 2.6],
       [5.5, 2.4],
       [5.5, 2.4],
       [5.8, 2.7],
       [6. , 2.7],
       [5.4, 3. ],
       [6. , 3.4],
       [6.7, 3.1],
       [6.3, 2.3],
       [5.6, 3. ],
       [5.5, 2.5],
       [5.5, 2.6],
       [6.1, 3. ],
       [5.8, 2.6],
       [5. , 2.3],
       [5.6, 2.7],
       [5.7, 3. ],
       [5.7, 2.9],
       [6.2, 2.9],
       [5.1, 2.5],
       [5.7, 2.8],
       [6.3, 3.3],
       [5.8, 2.7],
       [7.1, 3. ],
       [6.3, 2.9],
       [6.5, 3. ],
       [7.6, 3. ],
       [4.9, 2.5],
       [7.3, 2.9],
       [6.7, 2.5],
       [7.2, 3.6],
       [6.5, 3.2],
       [6.4, 2.7],
       [6.8, 3. ],
       [5.7, 2.5],
       [5.8, 2.8],
       [6.4, 3.2],
       [6.5, 3. ],
       [7.7, 3.8],
       [7.7, 2.6],
       [6. , 2.2],
       [6.9, 3.2],
       [5.6, 2.8],
       [7.7, 2.8],
       [6.3, 2.7],
       [6.7, 3.3],
       [7.2, 3.2],
       [6.2, 2.8],
       [6.1, 3. ],
       [6.4, 2.8],
       [7.2, 3. ],
       [7.4, 2.8],
       [7.9, 3.8],
       [6.4, 2.8],
       [6.3, 2.8],
       [6.1, 2.6],
       [7.7, 3. ],
       [6.3, 3.4],
       [6.4, 3.1],
       [6. , 3. ],
       [6.9, 3.1],
       [6.7, 3.1],
       [6.9, 3.1],
       [5.8, 2.7],
       [6.8, 3.2],
       [6.7, 3.3],
       [6.7, 3. ],
       [6.3, 2.5],
       [6.5, 3. ],
       [6.2, 3.4],
       [5.9, 3. ]])
plt.scatter(data[:,0],data[:,1],c=y)

lr = LogisticRegression()
lr.fit(data,y)
LogisticRegression()
lr.score(data,y)
0.82
lda = LinearDiscriminantAnalysis(n_components=2)
lda.fit(X,y)
LinearDiscriminantAnalysis(n_components=2)
X.shape
(150, 4)
lda_data = lda.transform(X)
lda_data
array([[ 8.06179978e+00,  3.00420621e-01],
       [ 7.12868772e+00, -7.86660426e-01],
       [ 7.48982797e+00, -2.65384488e-01],
       [ 6.81320057e+00, -6.70631068e-01],
       [ 8.13230933e+00,  5.14462530e-01],
       [ 7.70194674e+00,  1.46172097e+00],
       [ 7.21261762e+00,  3.55836209e-01],
       [ 7.60529355e+00, -1.16338380e-02],
       [ 6.56055159e+00, -1.01516362e+00],
       [ 7.34305989e+00, -9.47319209e-01],
       [ 8.39738652e+00,  6.47363392e-01],
       [ 7.21929685e+00, -1.09646389e-01],
       [ 7.32679599e+00, -1.07298943e+00],
       [ 7.57247066e+00, -8.05464137e-01],
       [ 9.84984300e+00,  1.58593698e+00],
       [ 9.15823890e+00,  2.73759647e+00],
       [ 8.58243141e+00,  1.83448945e+00],
       [ 7.78075375e+00,  5.84339407e-01],
       [ 8.07835876e+00,  9.68580703e-01],
       [ 8.02097451e+00,  1.14050366e+00],
       [ 7.49680227e+00, -1.88377220e-01],
       [ 7.58648117e+00,  1.20797032e+00],
       [ 8.68104293e+00,  8.77590154e-01],
       [ 6.25140358e+00,  4.39696367e-01],
       [ 6.55893336e+00, -3.89222752e-01],
       [ 6.77138315e+00, -9.70634453e-01],
       [ 6.82308032e+00,  4.63011612e-01],
       [ 7.92461638e+00,  2.09638715e-01],
       [ 7.99129024e+00,  8.63787128e-02],
       [ 6.82946447e+00, -5.44960851e-01],
       [ 6.75895493e+00, -7.59002759e-01],
       [ 7.37495254e+00,  5.65844592e-01],
       [ 9.12634625e+00,  1.22443267e+00],
       [ 9.46768199e+00,  1.82522635e+00],
       [ 7.06201386e+00, -6.63400423e-01],
       [ 7.95876243e+00, -1.64961722e-01],
       [ 8.61367201e+00,  4.03253602e-01],
       [ 8.33041759e+00,  2.28133530e-01],
       [ 6.93412007e+00, -7.05519379e-01],
       [ 7.68823131e+00, -9.22362309e-03],
       [ 7.91793715e+00,  6.75121313e-01],
       [ 5.66188065e+00, -1.93435524e+00],
       [ 7.24101468e+00, -2.72615132e-01],
       [ 6.41443556e+00,  1.24730131e+00],
       [ 6.85944381e+00,  1.05165396e+00],
       [ 6.76470393e+00, -5.05151855e-01],
       [ 8.08189937e+00,  7.63392750e-01],
       [ 7.18676904e+00, -3.60986823e-01],
       [ 8.31444876e+00,  6.44953177e-01],
       [ 7.67196741e+00, -1.34893840e-01],
       [-1.45927545e+00,  2.85437643e-02],
       [-1.79770574e+00,  4.84385502e-01],
       [-2.41694888e+00, -9.27840307e-02],
       [-2.26247349e+00, -1.58725251e+00],
       [-2.54867836e+00, -4.72204898e-01],
       [-2.42996725e+00, -9.66132066e-01],
       [-2.44848456e+00,  7.95961954e-01],
       [-2.22666513e-01, -1.58467318e+00],
       [-1.75020123e+00, -8.21180130e-01],
       [-1.95842242e+00, -3.51563753e-01],
       [-1.19376031e+00, -2.63445570e+00],
       [-1.85892567e+00,  3.19006544e-01],
       [-1.15809388e+00, -2.64340991e+00],
       [-2.66605725e+00, -6.42504540e-01],
       [-3.78367218e-01,  8.66389312e-02],
       [-1.20117255e+00,  8.44373592e-02],
       [-2.76810246e+00,  3.21995363e-02],
       [-7.76854039e-01, -1.65916185e+00],
       [-3.49805433e+00, -1.68495616e+00],
       [-1.09042788e+00, -1.62658350e+00],
       [-3.71589615e+00,  1.04451442e+00],
       [-9.97610366e-01, -4.90530602e-01],
       [-3.83525931e+00, -1.40595806e+00],
       [-2.25741249e+00, -1.42679423e+00],
       [-1.25571326e+00, -5.46424197e-01],
       [-1.43755762e+00, -1.34424979e-01],
       [-2.45906137e+00, -9.35277280e-01],
       [-3.51848495e+00,  1.60588866e-01],
       [-2.58979871e+00, -1.74611728e-01],
       [ 3.07487884e-01, -1.31887146e+00],
       [-1.10669179e+00, -1.75225371e+00],
       [-6.05524589e-01, -1.94298038e+00],
       [-8.98703769e-01, -9.04940034e-01],
       [-4.49846635e+00, -8.82749915e-01],
       [-2.93397799e+00,  2.73791065e-02],
       [-2.10360821e+00,  1.19156767e+00],
       [-2.14258208e+00,  8.87797815e-02],
       [-2.47945603e+00, -1.94073927e+00],
       [-1.32552574e+00, -1.62869550e-01],
       [-1.95557887e+00, -1.15434826e+00],
       [-2.40157020e+00, -1.59458341e+00],
       [-2.29248878e+00, -3.32860296e-01],
       [-1.27227224e+00, -1.21458428e+00],
       [-2.93176055e-01, -1.79871509e+00],
       [-2.00598883e+00, -9.05418042e-01],
       [-1.18166311e+00, -5.37570242e-01],
       [-1.61615645e+00, -4.70103580e-01],
       [-1.42158879e+00, -5.51244626e-01],
       [ 4.75973788e-01, -7.99905482e-01],
       [-1.54948259e+00, -5.93363582e-01],
       [-7.83947399e+00,  2.13973345e+00],
       [-5.50747997e+00, -3.58139892e-02],
       [-6.29200850e+00,  4.67175777e-01],
       [-5.60545633e+00, -3.40738058e-01],
       [-6.85055995e+00,  8.29825394e-01],
       [-7.41816784e+00, -1.73117995e-01],
       [-4.67799541e+00, -4.99095015e-01],
       [-6.31692685e+00, -9.68980756e-01],
       [-6.32773684e+00, -1.38328993e+00],
       [-6.85281335e+00,  2.71758963e+00],
       [-4.44072512e+00,  1.34723692e+00],
       [-5.45009572e+00, -2.07736942e-01],
       [-5.66033713e+00,  8.32713617e-01],
       [-5.95823722e+00, -9.40175447e-02],
       [-6.75926282e+00,  1.60023206e+00],
       [-5.80704331e+00,  2.01019882e+00],
       [-5.06601233e+00, -2.62733839e-02],
       [-6.60881882e+00,  1.75163587e+00],
       [-9.17147486e+00, -7.48255067e-01],
       [-4.76453569e+00, -2.15573720e+00],
       [-6.27283915e+00,  1.64948141e+00],
       [-5.36071189e+00,  6.46120732e-01],
       [-7.58119982e+00, -9.80722934e-01],
       [-4.37150279e+00, -1.21297458e-01],
       [-5.72317531e+00,  1.29327553e+00],
       [-5.27915920e+00, -4.24582377e-02],
       [-4.08087208e+00,  1.85936572e-01],
       [-4.07703640e+00,  5.23238483e-01],
       [-6.51910397e+00,  2.96976389e-01],
       [-4.58371942e+00, -8.56815813e-01],
       [-6.22824009e+00, -7.12719638e-01],
       [-5.22048773e+00,  1.46819509e+00],
       [-6.80015000e+00,  5.80895175e-01],
       [-3.81515972e+00, -9.42985932e-01],
       [-5.10748966e+00, -2.13059000e+00],
       [-6.79671631e+00,  8.63090395e-01],
       [-6.52449599e+00,  2.44503527e+00],
       [-4.99550279e+00,  1.87768525e-01],
       [-3.93985300e+00,  6.14020389e-01],
       [-5.20383090e+00,  1.14476808e+00],
       [-6.65308685e+00,  1.80531976e+00],
       [-5.10555946e+00,  1.99218201e+00],
       [-5.50747997e+00, -3.58139892e-02],
       [-6.79601924e+00,  1.46068695e+00],
       [-6.84735943e+00,  2.42895067e+00],
       [-5.64500346e+00,  1.67771734e+00],
       [-5.17956460e+00, -3.63475041e-01],
       [-4.96774090e+00,  8.21140550e-01],
       [-5.88614539e+00,  2.34509051e+00],
       [-4.68315426e+00,  3.32033811e-01]])
# 绘图看一下差异
plt.figure(figsize=(12,5))
plt.subplot(1,2,1)
plt.scatter(lda_data[:,0],lda_data[:,1],c=y)
plt.title('LDA')

plt.subplot(1,2,2)
plt.scatter(data[:,0],data[:,1],c=y)
plt.title('True')

Text(0.5, 1.0, 'True')

lr = LogisticRegression()
lr.fit(X,y)
lr.score(X,y)
0.9733333333333334
lr.fit(lda_data,y)
lr.score(lda_data,y)
0.98

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/741637.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-04-28
下一篇 2022-04-28

发表评论

登录后才能评论

评论列表(0条)

保存