目录
背景:
依赖包介绍:
示例:
参考:
背景:
计算深度学习模型参数量有现成的脚本可供使用,如下。简单的使用方法参考了代码【2】
依赖包介绍:pytorch框架中卷积网络的flops计数器:ptflops
安装:
pip install --upgrade git+https://github.com/sovrasov/flops-counter.pytorch.git
##or
#pip install ptflops
示例:说明【1】:
此脚本用于计算乘法加法运算的理论量 在卷积神经网络中。它还可以计算参数的数量和 给定网络的每层打印计算成本。
支持的层:
- conv1d/2d/3d(包括分组)
- convTranspasse2d(包括分组)
- 批次标准1d/2d/3d
- 激活(relu、prelu、elu、relu6、leakyrelu)
- 线性
- 向上采样
- 池(avgpool1d/2d/3d、maxpool1d/2d/3d和自适应池)
要求:Pythorch>;=0.4.1,TorchVision>;=0.2.1
1【3】.
import torchvision.models as models
import torch
from ptflops import get_model_complexity_info
with torch.cuda.device(0):
net = models.densenet161()
macs, params = get_model_complexity_info(net, (3, 224, 224), as_strings=True,
print_per_layer_stat=True, verbose=True)
print('{:<30} {:<8}'.format('Computational complexity: ', macs))
print('{:<30} {:<8}'.format('Number of parameters: ', params))
2.【2】
net = model()
inp_shape = (6, 64, 64) #输入的分辨率
from ptflops import get_model_complexity_info
FLOPS = 0
macs, params = get_model_complexity_info(net, inp_shape, verbose=False, print_per_layer_stat=True)
# params = float(params[:-4])
print(params)
macs = float(macs[:-4]) + FLOPS / 10 ** 9
print('mac', macs, params)
参考:
【1】Python ptflops包_程序模块 - PyPI - Python中文网
【2】NAFNet/NAFSSR_arch.py at main · megvii-research/NAFNet · GitHub
【3】GitHub - sovrasov/flops-counter.pytorch: Flops counter for convolutional networks in pytorch framework
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)