Numpy(科学计算库)---小练习

Numpy(科学计算库)---小练习,第1张

1,打印当前Numpy版本
import numpy as np
print (np.__version__)
"""
1.22.3
"""
2,构造一个全零的矩阵,并打印其占用的内存大小
yy = np.zeros((3,3))
yy
"""
array([[0., 0., 0.],
       [0., 0., 0.],
       [0., 0., 0.]])
"""
print('%d bytes'%(yy.size * yy.itemsize))
"""
72 bytes
"""
3,打印一个函数的帮助文档,比如numpy.add
print(help(np.add))
"""
Help on ufunc object:

add = class ufunc(builtins.object)
 |  Functions that operate element by element on whole arrays.
 |  
 |  To see the documentation for a specific ufunc, use `info`.  For
 |  example, ``np.info(np.sin)``.  Because ufuncs are written in C
 |  (for speed) and linked into Python with NumPy's ufunc facility,
 |  Python's help() function finds this page whenever help() is called
 |  on a ufunc.
 |  
 |  A detailed explanation of ufuncs can be found in the docs for :ref:`ufuncs`.
 |  
 |  **Calling ufuncs:** ``op(*x[, out], where=True, **kwargs)``
 |  
 |  Apply `op` to the arguments `*x` elementwise, broadcasting the arguments.
 |  
 |  The broadcasting rules are:
 |  
 |  * Dimensions of length 1 may be prepended to either array.
 |  * Arrays may be repeated along dimensions of length 1.
 |  
 |  Parameters
 |  ----------
 |  *x : array_like
 |      Input arrays.
 |  out : ndarray, None, or tuple of ndarray and None, optional
 |      Alternate array object(s) in which to put the result; if provided, it
 |      must have a shape that the inputs broadcast to. A tuple of arrays
 |      (possible only as a keyword argument) must have length equal to the
 |      number of outputs; use None for uninitialized outputs to be
 |      allocated by the ufunc.
 |  where : array_like, optional
 |      This condition is broadcast over the input. At locations where the
 |      condition is True, the `out` array will be set to the ufunc result.
 |      Elsewhere, the `out` array will retain its original value.
 |      Note that if an uninitialized `out` array is created via the default
 |      ``out=None``, locations within it where the condition is False will
 |      remain uninitialized.
 |  **kwargs
 |      For other keyword-only arguments, see the :ref:`ufunc docs `.
 |  
 |  Returns
 |  -------
 |  r : ndarray or tuple of ndarray
 |      `r` will have the shape that the arrays in `x` broadcast to; if `out` is
 |      provided, it will be returned. If not, `r` will be allocated and
 |      may contain uninitialized values. If the function has more than one
 |      output, then the result will be a tuple of arrays.
 |  
 |  Methods defined here:
 |  
 |  __call__(self, /, *args, **kwargs)
 |      Call self as a function.
 |  
 |  __repr__(self, /)
 |      Return repr(self).
 |  
 |  __str__(self, /)
 |      Return str(self).
 |  
 |  accumulate(...)
 |      accumulate(array, axis=0, dtype=None, out=None)
 |      
 |      Accumulate the result of applying the operator to all elements.
 |      
 |      For a one-dimensional array, accumulate produces results equivalent to::
 |      
 |        r = np.empty(len(A))
 |        t = op.identity        # op = the ufunc being applied to A's  elements
 |        for i in range(len(A)):
 |            t = op(t, A[i])
 |            r[i] = t
 |        return r
 |      
 |      For example, add.accumulate() is equivalent to np.cumsum().
 |      
 |      For a multi-dimensional array, accumulate is applied along only one
 |      axis (axis zero by default; see Examples below) so repeated use is
 |      necessary if one wants to accumulate over multiple axes.
 |      
 |      Parameters
 |      ----------
 |      array : array_like
 |          The array to act on.
 |      axis : int, optional
 |          The axis along which to apply the accumulation; default is zero.
 |      dtype : data-type code, optional
 |          The data-type used to represent the intermediate results. Defaults
 |          to the data-type of the output array if such is provided, or the
 |          the data-type of the input array if no output array is provided.
 |      out : ndarray, None, or tuple of ndarray and None, optional
 |          A location into which the result is stored. If not provided or None,
 |          a freshly-allocated array is returned. For consistency with
 |          ``ufunc.__call__``, if given as a keyword, this may be wrapped in a
 |          1-element tuple.
 |      
 |          .. versionchanged:: 1.13.0
 |             Tuples are allowed for keyword argument.
 |      
 |      Returns
 |      -------
 |      r : ndarray
 |          The accumulated values. If `out` was supplied, `r` is a reference to
 |          `out`.
 |      
 |      Examples
 |      --------
 |      1-D array examples:
 |      
 |      >>> np.add.accumulate([2, 3, 5])
 |      array([ 2,  5, 10])
 |      >>> np.multiply.accumulate([2, 3, 5])
 |      array([ 2,  6, 30])
 |      
 |      2-D array examples:
 |      
 |      >>> I = np.eye(2)
 |      >>> I
 |      array([[1.,  0.],
 |             [0.,  1.]])
 |      
 |      Accumulate along axis 0 (rows), down columns:
 |      
 |      >>> np.add.accumulate(I, 0)
 |      array([[1.,  0.],
 |             [1.,  1.]])
 |      >>> np.add.accumulate(I) # no axis specified = axis zero
 |      array([[1.,  0.],
 |             [1.,  1.]])
 |      
 |      Accumulate along axis 1 (columns), through rows:
 |      
 |      >>> np.add.accumulate(I, 1)
 |      array([[1.,  1.],
 |             [0.,  1.]])
 |  
 |  at(...)
 |      at(a, indices, b=None, /)
 |      
 |      Performs unbuffered in place operation on operand 'a' for elements
 |      specified by 'indices'. For addition ufunc, this method is equivalent to
 |      ``a[indices] += b``, except that results are accumulated for elements that
 |      are indexed more than once. For example, ``a[[0,0]] += 1`` will only
 |      increment the first element once because of buffering, whereas
 |      ``add.at(a, [0,0], 1)`` will increment the first element twice.
 |      
 |      .. versionadded:: 1.8.0
 |      
 |      Parameters
 |      ----------
 |      a : array_like
 |          The array to perform in place operation on.
 |      indices : array_like or tuple
 |          Array like index object or slice object for indexing into first
 |          operand. If first operand has multiple dimensions, indices can be a
 |          tuple of array like index objects or slice objects.
 |      b : array_like
 |          Second operand for ufuncs requiring two operands. Operand must be
 |          broadcastable over first operand after indexing or slicing.
 |      
 |      Examples
 |      --------
 |      Set items 0 and 1 to their negative values:
 |      
 |      >>> a = np.array([1, 2, 3, 4])
 |      >>> np.negative.at(a, [0, 1])
 |      >>> a
 |      array([-1, -2,  3,  4])
 |      
 |      Increment items 0 and 1, and increment item 2 twice:
 |      
 |      >>> a = np.array([1, 2, 3, 4])
 |      >>> np.add.at(a, [0, 1, 2, 2], 1)
 |      >>> a
 |      array([2, 3, 5, 4])
 |      
 |      Add items 0 and 1 in first array to second array,
 |      and store results in first array:
 |      
 |      >>> a = np.array([1, 2, 3, 4])
 |      >>> b = np.array([1, 2])
 |      >>> np.add.at(a, [0, 1], b)
 |      >>> a
 |      array([2, 4, 3, 4])
 |  
 |  outer(...)
 |      outer(A, B, /, **kwargs)
 |      
 |      Apply the ufunc `op` to all pairs (a, b) with a in `A` and b in `B`.
 |      
 |      Let ``M = A.ndim``, ``N = B.ndim``. Then the result, `C`, of
 |      ``op.outer(A, B)`` is an array of dimension M + N such that:
 |      
 |      .. math:: C[i_0, ..., i_{M-1}, j_0, ..., j_{N-1}] =
 |         op(A[i_0, ..., i_{M-1}], B[j_0, ..., j_{N-1}])
 |      
 |      For `A` and `B` one-dimensional, this is equivalent to::
 |      
 |        r = empty(len(A),len(B))
 |        for i in range(len(A)):
 |            for j in range(len(B)):
 |                r[i,j] = op(A[i], B[j])  # op = ufunc in question
 |      
 |      Parameters
 |      ----------
 |      A : array_like
 |          First array
 |      B : array_like
 |          Second array
 |      kwargs : any
 |          Arguments to pass on to the ufunc. Typically `dtype` or `out`.
 |          See `ufunc` for a comprehensive overview of all available arguments.
 |      
 |      Returns
 |      -------
 |      r : ndarray
 |          Output array
 |      
 |      See Also
 |      --------
 |      numpy.outer : A less powerful version of ``np.multiply.outer``
 |                    that `ravel`\ s all inputs to 1D. This exists
 |                    primarily for compatibility with old code.
 |      
 |      tensordot : ``np.tensordot(a, b, axes=((), ()))`` and
 |                  ``np.multiply.outer(a, b)`` behave same for all
 |                  dimensions of a and b.
 |      
 |      Examples
 |      --------
 |      >>> np.multiply.outer([1, 2, 3], [4, 5, 6])
 |      array([[ 4,  5,  6],
 |             [ 8, 10, 12],
 |             [12, 15, 18]])
 |      
 |      A multi-dimensional example:
 |      
 |      >>> A = np.array([[1, 2, 3], [4, 5, 6]])
 |      >>> A.shape
 |      (2, 3)
 |      >>> B = np.array([[1, 2, 3, 4]])
 |      >>> B.shape
 |      (1, 4)
 |      >>> C = np.multiply.outer(A, B)
 |      >>> C.shape; C
 |      (2, 3, 1, 4)
 |      array([[[[ 1,  2,  3,  4]],
 |              [[ 2,  4,  6,  8]],
 |              [[ 3,  6,  9, 12]]],
 |             [[[ 4,  8, 12, 16]],
 |              [[ 5, 10, 15, 20]],
 |              [[ 6, 12, 18, 24]]]])
 |  
 |  reduce(...)
 |      reduce(array, axis=0, dtype=None, out=None, keepdims=False, initial=, where=True)
 |      
 |      Reduces `array`'s dimension by one, by applying ufunc along one axis.
 |      
 |      Let :math:`array.shape = (N_0, ..., N_i, ..., N_{M-1})`.  Then
 |      :math:`ufunc.reduce(array, axis=i)[k_0, ..,k_{i-1}, k_{i+1}, .., k_{M-1}]` =
 |      the result of iterating `j` over :math:`range(N_i)`, cumulatively applying
 |      ufunc to each :math:`array[k_0, ..,k_{i-1}, j, k_{i+1}, .., k_{M-1}]`.
 |      For a one-dimensional array, reduce produces results equivalent to:
 |      ::
 |      
 |       r = op.identity # op = ufunc
 |       for i in range(len(A)):
 |         r = op(r, A[i])
 |       return r
 |      
 |      For example, add.reduce() is equivalent to sum().
 |      
 |      Parameters
 |      ----------
 |      array : array_like
 |          The array to act on.
 |      axis : None or int or tuple of ints, optional
 |          Axis or axes along which a reduction is performed.
 |          The default (`axis` = 0) is perform a reduction over the first
 |          dimension of the input array. `axis` may be negative, in
 |          which case it counts from the last to the first axis.
 |      
 |          .. versionadded:: 1.7.0
 |      
 |          If this is None, a reduction is performed over all the axes.
 |          If this is a tuple of ints, a reduction is performed on multiple
 |          axes, instead of a single axis or all the axes as before.
 |      
 |          For operations which are either not commutative or not associative,
 |          doing a reduction over multiple axes is not well-defined. The
 |          ufuncs do not currently raise an exception in this case, but will
 |          likely do so in the future.
 |      dtype : data-type code, optional
 |          The type used to represent the intermediate results. Defaults
 |          to the data-type of the output array if this is provided, or
 |          the data-type of the input array if no output array is provided.
 |      out : ndarray, None, or tuple of ndarray and None, optional
 |          A location into which the result is stored. If not provided or None,
 |          a freshly-allocated array is returned. For consistency with
 |          ``ufunc.__call__``, if given as a keyword, this may be wrapped in a
 |          1-element tuple.
 |      
 |          .. versionchanged:: 1.13.0
 |             Tuples are allowed for keyword argument.
 |      keepdims : bool, optional
 |          If this is set to True, the axes which are reduced are left
 |          in the result as dimensions with size one. With this option,
 |          the result will broadcast correctly against the original `array`.
 |      
 |          .. versionadded:: 1.7.0
 |      initial : scalar, optional
 |          The value with which to start the reduction.
 |          If the ufunc has no identity or the dtype is object, this defaults
 |          to None - otherwise it defaults to ufunc.identity.
 |          If ``None`` is given, the first element of the reduction is used,
 |          and an error is thrown if the reduction is empty.
 |      
 |          .. versionadded:: 1.15.0
 |      
 |      where : array_like of bool, optional
 |          A boolean array which is broadcasted to match the dimensions
 |          of `array`, and selects elements to include in the reduction. Note
 |          that for ufuncs like ``minimum`` that do not have an identity
 |          defined, one has to pass in also ``initial``.
 |      
 |          .. versionadded:: 1.17.0
 |      
 |      Returns
 |      -------
 |      r : ndarray
 |          The reduced array. If `out` was supplied, `r` is a reference to it.
 |      
 |      Examples
 |      --------
 |      >>> np.multiply.reduce([2,3,5])
 |      30
 |      
 |      A multi-dimensional array example:
 |      
 |      >>> X = np.arange(8).reshape((2,2,2))
 |      >>> X
 |      array([[[0, 1],
 |              [2, 3]],
 |             [[4, 5],
 |              [6, 7]]])
 |      >>> np.add.reduce(X, 0)
 |      array([[ 4,  6],
 |             [ 8, 10]])
 |      >>> np.add.reduce(X) # confirm: default axis value is 0
 |      array([[ 4,  6],
 |             [ 8, 10]])
 |      >>> np.add.reduce(X, 1)
 |      array([[ 2,  4],
 |             [10, 12]])
 |      >>> np.add.reduce(X, 2)
 |      array([[ 1,  5],
 |             [ 9, 13]])
 |      
 |      You can use the ``initial`` keyword argument to initialize the reduction
 |      with a different value, and ``where`` to select specific elements to include:
 |      
 |      >>> np.add.reduce([10], initial=5)
 |      15
 |      >>> np.add.reduce(np.ones((2, 2, 2)), axis=(0, 2), initial=10)
 |      array([14., 14.])
 |      >>> a = np.array([10., np.nan, 10])
 |      >>> np.add.reduce(a, where=~np.isnan(a))
 |      20.0
 |      
 |      Allows reductions of empty arrays where they would normally fail, i.e.
 |      for ufuncs without an identity.
 |      
 |      >>> np.minimum.reduce([], initial=np.inf)
 |      inf
 |      >>> np.minimum.reduce([[1., 2.], [3., 4.]], initial=10., where=[True, False])
 |      array([ 1., 10.])
 |      >>> np.minimum.reduce([])
 |      Traceback (most recent call last):
 |          ...
 |      ValueError: zero-size array to reduction operation minimum which has no identity
 |  
 |  reduceat(...)
 |      reduceat(array, indices, axis=0, dtype=None, out=None)
 |      
 |      Performs a (local) reduce with specified slices over a single axis.
 |      
 |      For i in ``range(len(indices))``, `reduceat` computes
 |      ``ufunc.reduce(array[indices[i]:indices[i+1]])``, which becomes the i-th
 |      generalized "row" parallel to `axis` in the final result (i.e., in a
 |      2-D array, for example, if `axis = 0`, it becomes the i-th row, but if
 |      `axis = 1`, it becomes the i-th column).  There are three exceptions to this:
 |      
 |      * when ``i = len(indices) - 1`` (so for the last index),
 |        ``indices[i+1] = array.shape[axis]``.
 |      * if ``indices[i] >= indices[i + 1]``, the i-th generalized "row" is
 |        simply ``array[indices[i]]``.
 |      * if ``indices[i] >= len(array)`` or ``indices[i] < 0``, an error is raised.
 |      
 |      The shape of the output depends on the size of `indices`, and may be
 |      larger than `array` (this happens if ``len(indices) > array.shape[axis]``).
 |      
 |      Parameters
 |      ----------
 |      array : array_like
 |          The array to act on.
 |      indices : array_like
 |          Paired indices, comma separated (not colon), specifying slices to
 |          reduce.
 |      axis : int, optional
 |          The axis along which to apply the reduceat.
 |      dtype : data-type code, optional
 |          The type used to represent the intermediate results. Defaults
 |          to the data type of the output array if this is provided, or
 |          the data type of the input array if no output array is provided.
 |      out : ndarray, None, or tuple of ndarray and None, optional
 |          A location into which the result is stored. If not provided or None,
 |          a freshly-allocated array is returned. For consistency with
 |          ``ufunc.__call__``, if given as a keyword, this may be wrapped in a
 |          1-element tuple.
 |      
 |          .. versionchanged:: 1.13.0
 |             Tuples are allowed for keyword argument.
 |      
 |      Returns
 |      -------
 |      r : ndarray
 |          The reduced values. If `out` was supplied, `r` is a reference to
 |          `out`.
 |      
 |      Notes
 |      -----
 |      A descriptive example:
 |      
 |      If `array` is 1-D, the function `ufunc.accumulate(array)` is the same as
 |      ``ufunc.reduceat(array, indices)[::2]`` where `indices` is
 |      ``range(len(array) - 1)`` with a zero placed
 |      in every other element:
 |      ``indices = zeros(2 * len(array) - 1)``,
 |      ``indices[1::2] = range(1, len(array))``.
 |      
 |      Don't be fooled by this attribute's name: `reduceat(array)` is not
 |      necessarily smaller than `array`.
 |      
 |      Examples
 |      --------
 |      To take the running sum of four successive values:
 |      
 |      >>> np.add.reduceat(np.arange(8),[0,4, 1,5, 2,6, 3,7])[::2]
 |      array([ 6, 10, 14, 18])
 |      
 |      A 2-D example:
 |      
 |      >>> x = np.linspace(0, 15, 16).reshape(4,4)
 |      >>> x
 |      array([[ 0.,   1.,   2.,   3.],
 |             [ 4.,   5.,   6.,   7.],
 |             [ 8.,   9.,  10.,  11.],
 |             [12.,  13.,  14.,  15.]])
 |      
 |      ::
 |      
 |       # reduce such that the result has the following five rows:
 |       # [row1 + row2 + row3]
 |       # [row4]
 |       # [row2]
 |       # [row3]
 |       # [row1 + row2 + row3 + row4]
 |      
 |      >>> np.add.reduceat(x, [0, 3, 1, 2, 0])
 |      array([[12.,  15.,  18.,  21.],
 |             [12.,  13.,  14.,  15.],
 |             [ 4.,   5.,   6.,   7.],
 |             [ 8.,   9.,  10.,  11.],
 |             [24.,  28.,  32.,  36.]])
 |      
 |      ::
 |      
 |       # reduce such that result has the following two columns:
 |       # [col1 * col2 * col3, col4]
 |      
 |      >>> np.multiply.reduceat(x, [0, 3], 1)
 |      array([[   0.,     3.],
 |             [ 120.,     7.],
 |             [ 720.,    11.],
 |             [2184.,    15.]])
 |  
 |  ----------------------------------------------------------------------
 |  Data descriptors defined here:
 |  
 |  identity
 |      The identity value.
 |      
 |      Data attribute containing the identity element for the ufunc, if it has one.
 |      If it does not, the attribute value is None.
 |      
 |      Examples
 |      --------
 |      >>> np.add.identity
 |      0
 |      >>> np.multiply.identity
 |      1
 |      >>> np.power.identity
 |      1
 |      >>> print(np.exp.identity)
 |      None
 |  
 |  nargs
 |      The number of arguments.
 |      
 |      Data attribute containing the number of arguments the ufunc takes, including
 |      optional ones.
 |      
 |      Notes
 |      -----
 |      Typically this value will be one more than what you might expect because all
 |      ufuncs take  the optional "out" argument.
 |      
 |      Examples
 |      --------
 |      >>> np.add.nargs
 |      3
 |      >>> np.multiply.nargs
 |      3
 |      >>> np.power.nargs
 |      3
 |      >>> np.exp.nargs
 |      2
 |  
 |  nin
 |      The number of inputs.
 |      
 |      Data attribute containing the number of arguments the ufunc treats as input.
 |      
 |      Examples
 |      --------
 |      >>> np.add.nin
 |      2
 |      >>> np.multiply.nin
 |      2
 |      >>> np.power.nin
 |      2
 |      >>> np.exp.nin
 |      1
 |  
 |  nout
 |      The number of outputs.
 |      
 |      Data attribute containing the number of arguments the ufunc treats as output.
 |      
 |      Notes
 |      -----
 |      Since all ufuncs can take output arguments, this will always be (at least) 1.
 |      
 |      Examples
 |      --------
 |      >>> np.add.nout
 |      1
 |      >>> np.multiply.nout
 |      1
 |      >>> np.power.nout
 |      1
 |      >>> np.exp.nout
 |      1
 |  
 |  ntypes
 |      The number of types.
 |      
 |      The number of numerical NumPy types - of which there are 18 total - on which
 |      the ufunc can operate.
 |      
 |      See Also
 |      --------
 |      numpy.ufunc.types
 |      
 |      Examples
 |      --------
 |      >>> np.add.ntypes
 |      18
 |      >>> np.multiply.ntypes
 |      18
 |      >>> np.power.ntypes
 |      17
 |      >>> np.exp.ntypes
 |      7
 |      >>> np.remainder.ntypes
 |      14
 |  
 |  signature
 |      Definition of the core elements a generalized ufunc operates on.
 |      
 |      The signature determines how the dimensions of each input/output array
 |      are split into core and loop dimensions:
 |      
 |      1. Each dimension in the signature is matched to a dimension of the
 |         corresponding passed-in array, starting from the end of the shape tuple.
 |      2. Core dimensions assigned to the same label in the signature must have
 |         exactly matching sizes, no broadcasting is performed.
 |      3. The core dimensions are removed from all inputs and the remaining
 |         dimensions are broadcast together, defining the loop dimensions.
 |      
 |      Notes
 |      -----
 |      Generalized ufuncs are used internally in many linalg functions, and in
 |      the testing suite; the examples below are taken from these.
 |      For ufuncs that operate on scalars, the signature is None, which is
 |      equivalent to '()' for every argument.
 |      
 |      Examples
 |      --------
 |      >>> np.core.umath_tests.matrix_multiply.signature
 |      '(m,n),(n,p)->(m,p)'
 |      >>> np.linalg._umath_linalg.det.signature
 |      '(m,m)->()'
 |      >>> np.add.signature is None
 |      True  # equivalent to '(),()->()'
 |  
 |  types
 |      Returns a list with types grouped input->output.
 |      
 |      Data attribute listing the data-type "Domain-Range" groupings the ufunc can
 |      deliver. The data-types are given using the character codes.
 |      
 |      See Also
 |      --------
 |      numpy.ufunc.ntypes
 |      
 |      Examples
 |      --------
 |      >>> np.add.types
 |      ['??->?', 'bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l',
 |      'LL->L', 'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'FF->F', 'DD->D',
 |      'GG->G', 'OO->O']
 |      
 |      >>> np.multiply.types
 |      ['??->?', 'bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l',
 |      'LL->L', 'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'FF->F', 'DD->D',
 |      'GG->G', 'OO->O']
 |      
 |      >>> np.power.types
 |      ['bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l', 'LL->L',
 |      'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'FF->F', 'DD->D', 'GG->G',
 |      'OO->O']
 |      
 |      >>> np.exp.types
 |      ['f->f', 'd->d', 'g->g', 'F->F', 'D->D', 'G->G', 'O->O']
 |      
 |      >>> np.remainder.types
 |      ['bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l', 'LL->L',
 |      'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'OO->O']

None
"""
4,创建一个10-49的数组,并将其倒序排列
yy = np.arange(10,50,1)
yy
"""
array([10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
       27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
       44, 45, 46, 47, 48, 49])
"""
yy_trans = yy[::-1]
yy_trans
"""
array([49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33,
       32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16,
       15, 14, 13, 12, 11, 10])
"""
5,找到一个数组中不为0的索引
np.nonzero([5,22,10,14,0,2,0,45])
"""
(array([0, 1, 2, 3, 5, 7], dtype=int64),)
"""
6,随机构造一个3*3矩阵,并打印其中最大与最小值
yy = np.random.random((3,3))
yy
"""
array([[0.20370941, 0.43612091, 0.70595564],
       [0.24069372, 0.273715  , 0.25698803],
       [0.19907169, 0.21970853, 0.54037143]])
"""
yy.min()
"""
0.19907168900348726
"""
yy.max()
"""
0.7059556367657052
"""
7,构造一个5*5的矩阵,令其值都为1,并在最外层加上一圈0
yy = np.ones((5,5))
yy
"""
array([[1., 1., 1., 1., 1.],
       [1., 1., 1., 1., 1.],
       [1., 1., 1., 1., 1.],
       [1., 1., 1., 1., 1.],
       [1., 1., 1., 1., 1.]])
"""
yy_zero = np.pad(yy,pad_width=1,mode='constant',constant_values=0)
yy_zero
"""
array([[0., 0., 0., 0., 0., 0., 0.],
       [0., 1., 1., 1., 1., 1., 0.],
       [0., 1., 1., 1., 1., 1., 0.],
       [0., 1., 1., 1., 1., 1., 0.],
       [0., 1., 1., 1., 1., 1., 0.],
       [0., 1., 1., 1., 1., 1., 0.],
       [0., 0., 0., 0., 0., 0., 0.]])
"""
8,构建一个shape为(6,7,8)的矩阵,并找到第100个元素的索引值
np.unravel_index(100,(6,7,8))
"""
(1, 5, 4)
"""
9,对一个5*5的矩阵做归一化 *** 作
yy = np.random.random((5,5))
yy
"""
array([[0.94940168, 0.65730346, 0.96278534, 0.75923461, 0.84884701],
       [0.76622936, 0.36055562, 0.92852778, 0.07413462, 0.49142217],
       [0.82448018, 0.8047853 , 0.83052986, 0.05108754, 0.9630701 ],
       [0.04363141, 0.78501252, 0.93953562, 0.47592529, 0.40644514],
       [0.30959323, 0.16236801, 0.71394387, 0.27592273, 0.99898129]])
"""
yy_max = yy.max()
yy_max
"""
0.9989812852483628
"""
yy_min = yy.min()
yy_min
"""
0.0436314121510083
"""
yy_arr = (yy-yy_min)/(yy_max-yy_min)
yy_arr
"""
array([[0.94810319, 0.6423532 , 0.96211237, 0.7490483 , 0.84284891],
       [0.75636996, 0.33173627, 0.92625371, 0.03192884, 0.46871912],
       [0.81734325, 0.79672789, 0.82367567, 0.00780461, 0.96241044],
       [0.        , 0.77603099, 0.93777603, 0.45249797, 0.37977053],
       [0.27839205, 0.12428598, 0.70164081, 0.2431479 , 1.        ]])
"""
10,找到两个数组中相同的值
y1 = np.random.randint(0,10,5)
y1
"""
array([0, 6, 0, 6, 1])
"""
y2 = np.random.randint(0,10,5)
y2
"""
array([9, 6, 9, 1, 7])
"""
y_same = np.intersect1d(y1,y2)
print(y_same)
"""
[1 6]
"""
11,得到今天 明天 昨天的日期
yesterday = np.datetime64('today','D') - np.timedelta64(1,'D')
today = np.datetime64('today','D')
tommorow = np.datetime64('today','D') + np.timedelta64(1,'D')
today
"""
numpy.datetime64('2022-05-01')
"""
tommorow
"""
numpy.datetime64('2022-05-02')
"""
yesterday
"""
numpy.datetime64('2022-04-30')
"""
12,得到一个月中所有的天
np.arange('2022-04','2022-05',dtype='datetime64[D]')
"""
array(['2022-04-01', '2022-04-02', '2022-04-03', '2022-04-04',
       '2022-04-05', '2022-04-06', '2022-04-07', '2022-04-08',
       '2022-04-09', '2022-04-10', '2022-04-11', '2022-04-12',
       '2022-04-13', '2022-04-14', '2022-04-15', '2022-04-16',
       '2022-04-17', '2022-04-18', '2022-04-19', '2022-04-20',
       '2022-04-21', '2022-04-22', '2022-04-23', '2022-04-24',
       '2022-04-25', '2022-04-26', '2022-04-27', '2022-04-28',
       '2022-04-29', '2022-04-30'], dtype='datetime64[D]')
"""
13,得到一个数的整数部分
yy = np.random.uniform(0,10,5)
yy
"""
array([2.90503468, 3.99604344, 3.58371427, 7.85081037, 9.31731275])
"""
np.floor(yy)
"""
array([2., 3., 3., 7., 9.])
"""
14,构造一个数组,让它不能被改变
yy = np.zeros(3)
yy
"""
array([0., 0., 0.])
"""
yy.flags.writeable = False
yy[0] = 1
"""
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
 in 
----> 1 yy[0] = 1

ValueError: assignment destination is read-only
"""
15,打印大数据的部分值,全部值
np.set_printoptions(threshold=5)
yy = np.zeros((15,15))
yy
"""
array([[0., 0., 0., ..., 0., 0., 0.],
       [0., 0., 0., ..., 0., 0., 0.],
       [0., 0., 0., ..., 0., 0., 0.],
       ...,
       [0., 0., 0., ..., 0., 0., 0.],
       [0., 0., 0., ..., 0., 0., 0.],
       [0., 0., 0., ..., 0., 0., 0.]])
"""
16,找到在一个数组中,最接近一个数的索引
yy = np.arange(100)
yy
"""
array([ 0,  1,  2, ..., 97, 98, 99])
"""
sq = np.random.uniform(0,100)
sq
"""
89.87060277876606
"""
index = (np.abs(yy-sq)).argmin()
print(yy[index])
"""
90
"""
17,32位float类型和32位int类型转换
yy = np.arange(10,dtype=np.int32)
print(yy.dtype)
"""
int32
"""
yy = yy.astype(np.float32)
print(yy.dtype)
"""
float32
"""
18,打印数组元素位置坐标与数值
yy = np.arange(9).reshape(3,3)
yy
"""
array([[0, 1, 2],
       [3, 4, 5],
       [6, 7, 8]])
"""
for index,value in np.ndenumerate(yy):
    print(index,value)
"""
(0, 0) 0
(0, 1) 1
(0, 2) 2
(1, 0) 3
(1, 1) 4
(1, 2) 5
(2, 0) 6
(2, 1) 7
(2, 2) 8
"""
19,按照数组的某一列进行排序
yy = np.random.randint(0,10,(3,3))
yy
"""
array([[1, 6, 3],
       [4, 9, 2],
       [3, 3, 8]])
"""
yy_column = yy[yy[:,1].argsort()]
yy_column
"""
array([[3, 3, 8],
       [1, 6, 3],
       [4, 9, 2]])
"""
20,统计数组中每个数值出现的次数
yy = np.array([1,3,4,2,4,1,3,5,2,3,4,5])
np.bincount(yy)
"""
array([0, 2, 2, 3, 3, 2], dtype=int64)
"""
21,对一个四维数组的最后两维来求和
yy = np.random.randint(0,10,(4,4,4,4))
yy
"""
array([[[[8, 4, 6, 3],
         [2, 7, 6, 8],
         [6, 4, 4, 4],
         [2, 8, 1, 0]],

        [[2, 8, 8, 7],
         [9, 1, 3, 2],
         [0, 5, 3, 1],
         [2, 9, 4, 9]],

        [[5, 6, 0, 7],
         [1, 8, 4, 9],
         [2, 8, 3, 1],
         [3, 5, 0, 2]],

        [[9, 0, 1, 4],
         [4, 7, 7, 2],
         [7, 6, 3, 1],
         [5, 5, 3, 3]]],


       [[[3, 8, 5, 8],
         [5, 2, 1, 2],
         [7, 8, 0, 5],
         [0, 9, 4, 7]],

        [[8, 0, 6, 8],
         [7, 3, 4, 5],
         [7, 1, 5, 0],
         [8, 8, 5, 6]],

        [[0, 7, 5, 4],
         [4, 3, 4, 7],
         [7, 4, 7, 3],
         [8, 5, 8, 6]],

        [[7, 1, 5, 9],
         [5, 1, 3, 4],
         [5, 3, 1, 9],
         [3, 6, 3, 7]]],


       [[[6, 6, 8, 3],
         [5, 6, 1, 0],
         [7, 8, 5, 4],
         [7, 2, 8, 5]],

        [[1, 4, 7, 8],
         [9, 8, 2, 5],
         [2, 7, 3, 7],
         [7, 6, 0, 4]],

        [[2, 7, 6, 9],
         [4, 6, 0, 3],
         [0, 3, 2, 8],
         [4, 8, 4, 5]],

        [[1, 2, 7, 6],
         [4, 0, 5, 3],
         [5, 6, 0, 0],
         [2, 8, 3, 3]]],


       [[[7, 1, 8, 4],
         [7, 7, 1, 1],
         [1, 1, 6, 9],
         [0, 0, 8, 0]],

        [[1, 9, 8, 2],
         [5, 0, 5, 0],
         [1, 3, 8, 1],
         [6, 2, 2, 4]],

        [[0, 7, 2, 5],
         [1, 8, 5, 3],
         [4, 7, 5, 1],
         [0, 8, 4, 4]],

        [[3, 1, 0, 6],
         [3, 2, 3, 2],
         [5, 4, 8, 7],
         [8, 1, 7, 2]]]])
"""
sq = yy.sum(axis=(-2,-1))
sq
"""
array([[73, 73, 64, 67],
       [74, 81, 82, 72],
       [81, 80, 71, 55],
       [61, 57, 64, 62]])
"""
22,交换矩阵中的两行
yy = np.arange(30).reshape(5,6)
yy
"""
array([[ 0,  1,  2,  3,  4,  5],
       [ 6,  7,  8,  9, 10, 11],
       [12, 13, 14, 15, 16, 17],
       [18, 19, 20, 21, 22, 23],
       [24, 25, 26, 27, 28, 29]])
"""
yy[[0,1]] = yy[[1,0]]
yy
"""
array([[ 6,  7,  8,  9, 10, 11],
       [ 0,  1,  2,  3,  4,  5],
       [12, 13, 14, 15, 16, 17],
       [18, 19, 20, 21, 22, 23],
       [24, 25, 26, 27, 28, 29]])
"""
23,找到一个数组中最常出现的数字
yy = np.random.randint(0,20,5)
print(yy)
"""
[18 14 16  8 18]
"""
yy_often = np.bincount(yy).argmax()
yy_often
"""
18
"""
24,快速查找TOP K
yy = np.arange(10000)
yy
"""
array([   0,    1,    2, ..., 9997, 9998, 9999])
"""
np.random.shuffle(yy)
yy
"""
array([9434, 5915, 7866, ..., 7133, 5724, 2156])
"""
n = 5
yy_top = yy[np.argpartition(-yy,n)[:n]]
yy_top
"""
array([9999, 9997, 9998, 9996, 9995])
"""
25,去除掉一个数组中,所有元素都相同的数据
a = np.array([1,2,3,4])
b = np.array([1,2,3,5])
np.all(a == b)
"""
False
"""
np.any(a == b)
"""
True
"""

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/798542.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-05-06
下一篇 2022-05-06

发表评论

登录后才能评论

评论列表(0条)

保存