public class Violence {
public static void main(String[] args) {
int [] arr={2,3,4,5,6,1,12,23};
int search = search(1, arr);
System.out.println(search);
}
public static int search(int n,int[] arr){
for (int i=0;i<arr.length;i++){
if(arr[i]==n){
return i;
}
}
return -1;
}
}
2.二分法
二分法的mid=(left+right)/2,然后递归
递归方法
/*
二分查找的数组必须是有序的
找到返回下标,没找到返回-1
在数组中没有重复的数字
*/
public static int searchIndex(int []arr,int left,int right,int SearchVal){
int mid=(left+right)/2;
int minVal=arr[mid];
if(left>right){
return -1;
}
if(SearchVal>minVal){
return searchIndex(arr,mid+1,right,SearchVal);
}else if(SearchVal<minVal){
return searchIndex(arr,left,mid-1,SearchVal);
}else {
return mid;
}
}
非递归
/*
非递归二分查找
*/
public static int binarySearch(int[] arr,int value){
int left=0;
int right=arr.length-1;
while (left<right){
int mid = (left+right)/2;
if(arr[mid]==value){
return mid;
}else if(arr[mid]<value){
right=mid+1;
}else {
left=mid-1;
}
}
return -1;
}
用二分查找递归的方式查找有重复的数字
/*
在数组中有重复的数字;
*/
public static ArrayList<Integer> searchIndex2(int []arr, int left, int right, int SearchVal){
int mid=(left+right)/2;
int minVal=arr[mid];
if(left>right){
return new ArrayList<>();
}
if(SearchVal>minVal){
return searchIndex2(arr,mid+1,right,SearchVal);
}else if(SearchVal<minVal){
return searchIndex2(arr,left,mid-1,SearchVal);
}else {
//return mid;
ArrayList<Integer> list = new ArrayList<>();
//temp想左扫描
int temp = mid-1;
while (true){
if(temp<0 || arr[temp]!=SearchVal){
break;
}
list.add(temp);
temp--;
}
list.add(mid);
int temps = mid+1;
while (true){
if(temps>right ||arr[temps]!=SearchVal){
break;
}
list.add(temps);
temps++;
}
return list;
}
}
3.插值查找
思想:就是将二分法的mid=(left+right)/2,变成mid=left+(right-left)*()(key-arr[left])/(arr[right]-arr[left]))然后递归
/*
插值查找
*/
public static int InsertSearch(int []arr,int left,int right,int findVal){
if(left>right || findVal<arr[0] || findVal>arr[arr.length-1]){
return -1;
}
int mid = left +(right-left)*((findVal-arr[left])/(arr[right]-arr[left]));
int midVal = arr[mid];
if(findVal>midVal){
return InsertSearch(arr,mid+1,right,findVal);
}else if(findVal<midVal){
return InsertSearch(arr,left,mid-1,findVal);
}else {
return mid;
}
}
4.斐波那契数列查找(黄金分割率)
//斐波那契查找算法
public class Fibonacci {
public static int Maxsize = 20;
public static void main(String[] args) {
int[] arr = {1, 3, 5, 7, 9, 12, 15};
int val = findVal(arr, 12);
System.out.println(val);
}
//用函数定义一个斐波那契数列
public static int[] fib() {
int[] f = new int[Maxsize];
f[0] = 1;
f[1] = 1;
for (int i = 2; i < Maxsize; i++) {
f[i] = f[i - 1] + f[i - 2];
}
return f;
}
public static int findVal(int[] arr, int key) {
int low = 0;
int high = arr.length - 1;
int f[] = fib();// 调用的斐波那契数列
int k = 0;//斐波那契数列所以
int mid = 0;
while (high > f[k]) {
k++;
}
int[] temp = Arrays.copyOf(arr, f[k]);
for (int i = high + 1; i < temp.length; i++) {
temp[i] = arr[high];
}
while (low <= high) {
mid = low+f[k - 1] - 1;
if (key < temp[mid]) {
high = mid - 1;
k--;
} else if (key > temp[mid]) {
low = mid + 1;
k -=2;
} else {
if(mid<=high){
return mid;
}else {
return high;
}
}
}
return -1;
}
}
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)