过程
pom.xml
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>org.example</groupId>
<artifactId>hdfs-api</artifactId>
<version>1.0-SNAPSHOT</version>
<properties>
<maven.compiler.source>16</maven.compiler.source>
<maven.compiler.target>16</maven.compiler.target>
</properties>
<dependencies>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>2.7.4</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version>2.7.4</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.7.4</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-core</artifactId>
<version>2.7.4</version>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>RELEASE</version>
</dependency>
</dependencies>
</project>
WordCountMapper.java
package com.wordcount;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
@Override
protected void map(LongWritable key,Text value,Mapper<LongWritable,Text,Text,IntWritable>.Context context) throws IOException,InterruptedException{
String line=value.toString();//接收传进来的一行文本,把数据类型转换为Java类型String
String[] words=line.split(" ");//将这行内容按空格分割,存入数组words中
//遍历数组,<单词,1>
for (String word:words){//使用context,把map阶段处理的数据发送给Reduce阶段作为输入数据
context.write(new Text(word),new IntWritable(1));//把Java数据类型转换为大数据数据类型
}
}
}
WordCountReducer.java
package com.wordcount;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
public class WordCountReducer extends Reducer<Text, IntWritable,Text,IntWritable> {
@Override
protected void reduce(Text key,Iterable<IntWritable>value,Reducer<Text,IntWritable,Text,IntWritable>.Context
context)throws IOException,InterruptedException{
int count=0;//定义计数器
for (IntWritable iw:value){//遍历一组迭代器,把每一个数量1累加起来构成单词总数
count += iw.get();
}
context.write(key,new IntWritable(count));
}
}
WordCountDriver.java
package com.wordcount;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class WordCountDriver {
public static void main(String[] args) throws Exception {
// 1. 获取 job
Configuration conf = new Configuration();
//conf.set("fs.defaultFS", "hdfs://hadoop01:50070");
conf.set("mapreduce.framework.name","local");
//2.加载jar驱动
Job job = Job.getInstance(conf);
job.setJarByClass(WordCountDriver.class);
// 3. 关联 mapper 和 reducer
job.setMapperClass(WordCountMapper.class);
job.setReducerClass(WordCountReducer.class);
// 4. 设置 map 输出的 k v 类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
// 5. 设置最终输出的k v类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
// 6. 设置输入路径和输出路径
FileInputFormat.setInputPaths(job,"E:/hadoopw/input");
FileOutputFormat.setOutputPath(job,new Path("E:/hadoopw/output"));
// 7. 提交程序并监控执行情况
boolean res=job.waitForCompletion(true);
System.exit(res ? 0 : 1);
}
}
输出结果
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)